
MidasCpp
Molecular Interactions Dynamics And Simulation

C++ package
Chemistry Program Package

Completely Pathetic Programming

User’s Guide

Contents

Preface i
0.1 Distribution and License . i
0.2 Standard Disclaimer . i
0.3 Citation . i
0.4 Authors . i

I MidasCpp User’s Guide 1

1 Getting started 2
1.1 Installation . 2
1.2 Running MidasCpp . 3
1.3 Input . 3
1.4 Getting started with the example suite . 4

2 Tutorial 6
2.1 Running a VSCF calculation . 6
2.2 Constructing a potential energy or molecular property surface 7

3 More detailed information 13
3.1 Advanced installations . 13

3.1.1 Compiling with MPI and OpenMP . 13
3.1.2 External libraries . 14
3.1.3 Vector inputs . 14

3.2 Potential energy or molecular property surface calculations 14
3.2.1 Electronic structure programs . 15
3.2.2 Folder structure . 15
3.2.3 Commencing a calculation . 17

II Theory 18

4 Coordinates 20
4.1 Normal-Coordinates and harmonic oscillator treatment of Molecular vibrations . . 20

4.1.1 Classical coordinate transformation approach 20
4.1.2 Quantization of the vibrational energy . 23

4.2 Frequency scaled normal coordinates . 23
4.3 Semi-numerical gradient-based frequency analysis 24
4.4 Optimized coordinates . 27

1

4.4.1 Optimized Coordinates . 27
4.4.2 On PES forms appropriate for Optimization of Coordinates 28
4.4.3 State-average Optimized Coordinates . 28
4.4.4 Hybrid Optimized and Localized Coordinates 28

4.5 FALCON: Flexible Adaptation of Local Coordinates Of Nuclei 29

5 Potential energy surfaces 30
5.1 Potential energy surfaces - general aspects . 30
5.2 The potential energy surface as a function of many variable 31
5.3 Approximate representation of potential energy surfaces 32

5.3.1 Taylor expansion of the potential . 33
5.3.2 Restricted mode coupling . 34
5.3.3 Building the potential through its values on a grid 37
5.3.4 Midas PES construction methods . 38
5.3.5 Taylor expansion . 38
5.3.6 Static grids expansion . 38
5.3.7 Double incremental expansion . 39
5.3.8 The Adaptive density guided approach . 40

6 Wave-functions for nuclear motion for systems with many degrees of freedom:
An overview 41
6.1 Introduction, notation, and the scaling problem . 41
6.2 The vibrational self consistent field method . 42
6.3 Basis set expansion for VSCF . 44
6.4 Correlated Vibrational Wave functions : basic aspects 45

6.4.1 A few comments . 45
6.4.2 Vibrational Configuration Interaction . 45
6.4.3 Vibrational Møller-Plesset perturbation theory 46
6.4.4 Vibrational coupled cluster theory . 48

7 Many-mode wave-functions in MidasCpp 51
7.1 Vibrational Self-Consistent Field . 51
7.2 Vibrational Møller-Plesset perturbation theory . 51
7.3 Vibrational Coupled Cluster . 52

7.3.1 Ground-state Vibrational Coupled Cluster 52
7.3.2 VCC response theory . 52

7.4 Vibrational Configuation Interaction . 53
7.5 Tensor-Decomposition Methods . 54

8 Primitive basis sets and integrals 55
8.1 B-spline basis functions . 55

8.1.1 B-spline basis function definition . 55
8.1.2 Integrals of B-spline basis functions . 56
8.1.3 Why B-spline basis sets are useful . 56
8.1.4 Defining the B-spline basis in MidasCpp 57
8.1.5 B-spline basis sets literature and citations 57

8.2 Harmonic oscillator basis functions . 57
8.3 Distributed Gaussians . 57

2

III MidasCpp Input/Output Reference Manual 58

9 General input options 59
9.1 General keywords . 59
9.2 Advanced keywords . 60

10 Singlepoint input options 62
10.1 General keywords . 62

11 Vib input options 65
11.1 General keywords . 65
11.2 Advanced keywords . 66

12 Basis input options 67
12.1 General keywords . 67
12.2 Advanced keywords . 69

13 Operator input options 70
13.1 General keywords . 70
13.2 Advanced keywords . 71
13.3 Operator input from file . 71

14 VSCF input options 72
14.1 General keywords . 72
14.2 Advanced keywords . 74

15 VCC input options 75
15.1 General keywords . 75
15.2 Advanced keywords . 80
15.3 Tables . 90

16 Response input options 91
16.1 General keywords . 91
16.2 Advanced keywords . 94

17 TDH input options 95
17.1 General keywords . 95
17.2 Advanced keywords . 97

18 Pes input options 100
18.1 General keywords . 100
18.2 Advanced keywords . 112

19 FitBasis input options 114
19.1 General keywords . 114
19.2 Advanced keywords . 116

20 GenFitBasisDef input options 118
20.1 General keywords . 118

3

21 System input options 120
21.1 General keywords . 120

22 Falcon input options 123
22.1 General keywords . 123
22.2 Advanced keywords . 124

23 FreqAna input options 126
23.1 General keywords . 126

24 RotCoord input options 129
24.1 General keywords . 129

25 ODE-integration options 133
25.1 General keywords . 133
25.2 Advanced keywords . 134

26 Tensor-decomposition options 136
26.1 General keywords . 136
26.2 Advanced keywords . 140

27 Laplace-decomposition options 147
27.1 General keywords . 147
27.2 Advanced keywords . 148

A Input file description 149
A.1 The molecule file . 149

B Output file description 151
B.1 Vibrational wave function calculation output files 151

B.1.1 Output files from VSCF calculations . 151
B.1.2 Output files from correlated vibrational wave-function calculations 152
B.1.3 Output files from time-dependent wave-function calculations 156

B.2 Surface calculation output files . 157
B.2.1 Output files in analysis sub-directory . 157
B.2.2 Output files in savedir sub-directory . 158

4

Preface

This is the documentation for MidasCpp version v2019.4.0

0.1 Distribution and License

MidasCpp[1] is distributed under the GNU Lesser General Public License, version 2.1. A descrip-
tion of MidasCpp is available on https://midascpp.gitlab.io/ and the source code is hosted on
GitLab, which is the source of distribution including updates and communication.

Consider to cite:

1. O. Christiansen, D. Artiukhin, I. H. Godtliebsen, E. M. Gras, W. Győrffy, M. B.
Hansen, M. B. Hansen, E. L. Klinting, J. Kongsted, C. König, D. Madsen, N. K.
Madsen, K. Monrad, G. Schmitz, P. Seidler, K. Sneskov, M. Sparta, B. Thomsen, D.
Toffoli, A. Zoccante, MidasCpp, version 2019.04.0

0.2 Standard Disclaimer

MidasCpp is an experimental code under constant development. There are no guarantees con-
cerning the performance of the code or the correctness of the results. The authors can not accept
responsibility for any damage done or caused by the use of this program.

0.3 Citation

Any use of the program that results in published material should cite the program itself,

“O. Christiansen, D. Artiukhin, I. H. Godtliebsen, E. M. Gras, W. Győrffy, M. B.
Hansen, M. B. Hansen, E. L. Klinting, J. Kongsted , C. König, D. Madsen, N. K.
Madsen, K. Monrad, G. Schmitz, P. Seidler, K. Sneskov, M. Sparta , B. Thomsen, D.
Toffoli, and A. Zoccante, MidasCpp, version 2019.04.0”

as well as the original literature describing the essential MidasCpp functionalities used. The theo-
retical background chapters of the manual describes the background and list appropriate references.
The essential MidasCpp references will be highlighted separately via a red box. Please cite these
articles if you use the described functionality. An example for such a reference list you fill find at
the end of this chapter for the MidasCpp program itself.

0.4 Authors

The development and distribution of MidasCpp is led by the initiator Ove Christiansen. The
list of authors contributing over time includes:

i

https://www.gnu.org/licenses/old-licenses/lgpl-2.1.en.html
https://midascpp.gitlab.io/
https://gitlab.com/midascpp/midascpp

Contributing authors (listed alphabetically by surname):

• Denis Artiukhin

• Ove Christiansen

• Ian Heide Godtliebsen

• Eduard Matito Gras

• Werner Győrffy

• Mikkel Bo Hansen

• Mads Bøttger Hansen

• Emil Lund Klinting

• Jacob Kongsted

• Carolin König

• Diana Madsen

• Niels Kristian Madsen

• Kasper Monrad

• Gunnar Schmitz

• Peter Seidler

• Kristian Sneskov

• Manuel Sparta

• Bo Thomsen

• Daniele Toffoli

• Alberto Zoccante

References

Midas Related Publications
[1] O. Christiansen, D. Artiukhin, I. H. Godtliebsen, E. M. Gras, W. Győrffy, M. B.

Hansen, M. B. Hansen, E. L. Klinting, J. Kongsted, C. König, D. Madsen, N. K.
Madsen, K. Monrad, G. Schmitz, P. Seidler, K. Sneskov, M. Sparta, B. Thomsen, D.
Toffoli, A. Zoccante, MidasCpp, version 2019.04.0.

ii

Part I

MidasCpp User’s Guide

1

Chapter 1

Getting started

In the following sections, you will find the basic instructions how to install and run MidasCpp .
Installation is explained in 1.1 and how to run in 1.2 followed by a short description on how to get
started using our example suite in 1.4. A small tutorial for basic calculations is given in chapter 2.

1.1 Installation

To get hold of the source code either navigate to http://gitlab.com/midascpp/midascpp/releases
and download a release tarball, or use a commandline tool like wget to download a specific release:

wget https://gitlab.com/midascpp/midascpp/-/archive/2019.04.0/midascpp-2019.04.0.tar.gz

It is also possible to clone the git repository containing the MidasCpp source code:

git clone git@gitlab.com:midascpp/midascpp.git

For compilation you need an up-to-date C++ compiler which complies to the C++17 standard - we
recomment using gcc version 7.2.0 or above. Further requirements on libraries or tested compilers
are listed in Table 1.1.

To configure the compilation run

./configure --prefix=/path/to/install

where /path/to/install is the path you want MidasCpp binaries and other files to be installed to
after compilation. Running the configure script this way sets up Makefiles etc. for a standard
build without parallelization or other features. See 3.1 for further hints on configuring or tweaking
installations. The source code can now be compiled by typing

make complete

Using the option complete the source code is compiled and linked, and afterwards MidasCpp binaries
etc. are installed in the prefix specified when configured. To be able to access MidasCpp from
the command line append the bin directory of the MidasCpp installation to your PATH. This can by
automated by adding the following two lines to your .bashrc:

export MIDASINSTALL=/path/to/install

export PATH=$MIDASINSTALL/bin:$PATH

To verify the correctness of your MidasCpp installation it is strongly recommended to run some
examples from the test_suite. To do this go to test_suite and run ./TEST installshort. This
will test the most important parts of MidasCpp in a few seconds.

For a more elaborate test run ./TEST installlong, but do note this may take hours. For a
more complete overview of additional test we refer to the info in the test_suite itself.

2

Table 1.1: Overview of required compilers, libraries and tools to compile, test and run MidasCpp .
In some cases different possible tested options are given.

Compilers
C++
Name Version Comments

gcc 7.2 Our default.
Clang 6.0 Was tested.
Clang 7.0 STL does not support all C++17 features needed.

Fortran
Name Version Comments

gfortran 3.x + newer Needed for Netlib LAPACK.
F90 standard required.

Linux/Unix Tools
Name Version Comments
CMake 3.9

GNU Make 3.82
The tools below are mainly used for the test and example suite.

bash 4.2 Version 4.2 tested.
Older version probably work as well.

awk
bc

1.2 Running MidasCpp

To run MidasCpp in the most basic way without any parallelization or other features run:

midascpp <midas input file>

So for example

midascpp midas.minp

will run MidasCpp using the input file midas.minp in the current directory. This will generate an
output file called midas.mout. Output is always directed to a file with the same name as the input
file with extension .mout. Additional command line options can be found via

midascpp --help

Some calculations also produces output in terms of extra data files, scripts and figures. To get an
overview including a small description of all files that can be generated by MidasCppwe refer to
section B in the appendix.

Some MidasCpp calculations assume a special folder structure to be present to read in additional
input files or to put additional output files at specific places.

• In section 3.2.2 you find a description on the folder structure for PES calculations.

This is mostly the case when running PES type calculations.

1.3 Input

In the this section a general overview about the structure of MidasCpp input files is presented, but
for specific example to getting started we refer to the example suite.

Input should reside in a file called Midas.inp in the main directory used for the calculation.
MidasCpp first reads and checks this input file and thereafter calls the various sub-modules. The
input is structured in levels. The keyword level is indicated by #1, #2 etc. MidasCpp interprets

3

keywords case insensitive and blank characters are removed in the pre processing step. A particular
example of an input for a calculation doing actually nothing is the following:

#0 Midas input // Everything before this is ignored
#1 General // The general input section
#2 IoLevel // Sets the general level of output
2
#0 Midas Input End // Everything after this is ignored

This short input example simply sets the general IoLevel, dictating the amount of output
generated. This can be done at a general level and for particular functionalities.

Everything occurring after // in the input is ignored, as are all lines between an initial /∗ and
a final ∗/ (similar to C++ programming conventions). These can be used to make comments for
input files. In addition all lines beginning with ! are ignored, which makes it quick to remove a
keyword from an input, without deleting it.

In some sections, the input can define that information from other files are used, such as
definitions of operators etc. These files must then also be copied to the directory where the
calculation takes place.

To get a feel for the hierarchical structure here is a longer template for input.
#0 Midas input // Everything before this is ignored
#1 Vib // Now comes vibrational input section
#2 Operat // Section defining operator
#3 // various operator options
....
#2 Basis // Section defining one-mode basis
#3 // various basis options
....
#2 Vscf // Section defining VSCF calculations
#3 // various vscf options
#2 Vcc // Section defining correlation calculations:

// VCC, VCI and VMP
#3 // various vcc options
....
#3 Rsp // Response calculations for each VCC state
#4 // various response options
....
#3 // back to various vcc options
....
#0 Midas Input End // Everything after this is ignored

1.4 Getting started with the example suite

We outline in this introduction only some very general aspects of the input to MidasCpp . We refer
to the example suite https://gitlab.com/midascpp/midascpp_examples for illustrative examples
and section III in the reference manual III for a more detailed overview of the available keywords.
It is highly recommended to use the example suite for getting started with MidasCpp .

The example suite is hierarchical build

4

https://gitlab.com/midascpp/midascpp_examples

Folder structure of the example suite

vib surface coordinates

vcc vci vscf taylor grid

adga static

modvibcoord

to give a natural structure to search for the kind of MidasCpp calculation you are interested in.
We mainly distinguish between the construction of various surfaces (surface) e.g. potential energy
surface (PES) or dipole surfaces, vibrational wavefunction calculations (vib) and the generation
of specialized vibrational coordinates (coordinates). In a typical application scenario first a PES
has to be generated, which is then used in a subsequent vibrational structure calculation. We
recommend to follow the same steps, when looking at the examples.

It has to be noted that the PES construction requires external electronic structure (ES) pro-
grams. MidasCpp has a generic interface and can be used in combination with any ES program, but
in the example suite you find examples using Gaussian, MolPro, ORCA, TURBOMOLE, Dalton
and Cfour.
Further instructions can be found in README.md of the example suite. Each example has a
README.md itself, which appears nicely highlighted on GitLab. We recommend using the GitLab
page to browse the example suite.

5

Chapter 2

Tutorial

In the following we will go through a few examples in the example suite in more detail.

2.1 Running a VSCF calculation

First we will take a look at the example in vib/vscf/h2o_energy. If you run the example you
will also generate the following input. For information consider the comments in the input given
below.

#0 MIDAS Input

#1 general // General input

#2 IoLevel // Set general (minimum) IO level

5

#1 Vib // Vibrational input

#2 Operator // Operator input

#3 OperFile // Operator file (in this case contains only the PES,

h2o_h0.mop // but kinetic energy is added as default)

#2 Basis // Basis input

#3 HoBasis // Use harmonic-oscillator basis up to quantum number n=10

10

#2 Vscf // VSCF input. If only one basis set and operator defined,

// VSCF uses those as default.

#0 Midas Input End

It is assumed that the operator file h2o_h0.mop containing an analytical representation of the
potential is located in the same folder. Such an operator file is usually generated during a PES
construction and we refer to more details on this issue to Sec. 3.2. To run the example execute
the command

midascpp h2o_energy.minp

in your terminal and an output file called h2o_energy.mout will be generated. In the file you will
find information on the convergence

6

Iter. 0 E_vscf = 2.1465343912674632E-02
Iter. 1 E_vscf = 2.1067423815696335E-02 (decrease: 3.9792009697829644E-04,rel=1.8887933354329974E-02)
Iter. 2 E_vscf = 2.1059036014945329E-02 (decrease: 8.3878007510057584E-06,rel=3.9829936873905542E-04)
Iter. 3 E_vscf = 2.1059032750299238E-02 (decrease: 3.2646460916552211E-09,rel=1.5502355356794972E-07)
Iter. 4 E_vscf = 2.1059032748838649E-02 (decrease: 1.4605885945151442E-12,rel=6.9356869896870827E-11)
Iter. 5 E_vscf = 2.1059032748837983E-02 (decrease: 6.6613381477509392E-16,rel=3.1631738395575200E-14)
Iter. 6 E_vscf = 2.1059032748837990E-02 (decrease: -6.9388939039072284E-18,rel=-3.2949727495390822E-16)
Vscf scf00_0.0 converged! E = 2.1059032748837990E-02 in N_it = 6
Iter. 6 E_vscf = 2.1059032748837993E-02 (decrease: -3.4694469519536142E-18,rel=-1.6474863747695408E-16)

and the VSCF energy given in several units.

Calculations ordered after operator/basis/name/increasing energy:
+---+
VSCF: scf00_0.0 E = 2.1059032748837990E-02 Occ: [0,0,0] au

Units is converted with 2.1947463137049999E+05 corresponding to au to cm-1

Calculations ordered after operator/basis/name/increasing energy:
+---+
VSCF: scf00_0.0 E = 4.6219234495705050E+03 Occ: [0,0,0] cm-1

Units is converted with 2.7211384500000001E+01 corresponding to au to eV

Calculations ordered after operator/basis/name/increasing energy:
+---+
VSCF: scf00_0.0 E = 5.7304543732672253E-01 Occ: [0,0,0] eV

If MidasCpp ended properly (without crash) the last thing it will print out is

Midas ended at Tue Jan 22 11:37:38 2019

where the date of course varies.

2.2 Constructing a potential energy or molecular property
surface

The first example, which showcased a VSCF energy calculation, was a bit unusual given that
a predefined potential was used. The molecular potential usually have to be constructed first,
before a vibrational structure calculation can be performed. MidasCpp offers several different
methods of surface construction via the PES module, which will be detailed in subsequent parts
of the manual, see chapter 5. In the example, the ADGA will be used in order to construct
a potential energy surface for water with single point calculations at the CCSD(F12*)(T)/cc-
pVDZ-F12 level of theory by running the TURBOMOLE program. This is similar to the example
surface/grid/adga/std_h2o_turbomole_ccsdf12_pt3_mp2dip, as found in the example_suite of
MidasCpp . The input file looks something like the following:

#0 MidasInput

#1 General

#2 AnalysisDir

<pwd>/analysis

7

#1 SinglePoint

#2 Name

generic_turbomole_spc

#2 Type

SP_GENERIC

#2 InputCreatorScript

InputCreatorScript.sh

#2 RunScript

RunScript.sh

#2 PropertyInfo

turbomole.mpropinfo

#1 System

#2 SysDef

#3 MoleculeFile

Midas

<pwd>/std_h2o_turbomole_ccsdf12_pt3_mp2dip.mmol

#1 Pes

#2 MainDir

<pwd>

#2 SaveIoDir

<pwd>/savedir

#2 AdgaInfo

2

#2 MultilevelPes

generic_turbomole_spc 2

#2 AnalyzeStates

[3*4]

#1 Vib

#2 Operator

#3 OperFile

<pwd>/savedir/prop_no_1.mop

#2 Basis

#3 BSplineBasis

20

#3 PrimBasisDensity

0.8

#3 ScalBounds

1.5 20.0

#2 Vscf

#1 Analysis

8

#0 MidasInputEnd

Additional files will be needed in order to perform the surface construction calculation, which
are described in section 3.2. The purpose here is to describe the different blocks of input. The
first input block specifies the location of the analysis directory, which holds various files for further
analysis by the program or by the user. This is especially important for the ADGA as all handling
of the vibrational density happens in this directory.

#1 General

#2 AnalysisDir

<pwd>/analysis

The next input block is used to define how the single point calculations should be carried out,
(consult chapter 10 for additional references). In this example a generic style single point calcu-
lation is choosen, which means that the user will have to provide scripts to allows for interfacing
MidasCppwith a quantum chemistry program of his or her choosing. Two scripts are required, the
input creator script which creates the individual single point input file and a runscript which runs
the electronic structure program input file and extracts the required information, e.g. energy or
other molecular properties.

#1 SinglePoint

#2 Name

generic_turbomole_spc

#2 Type

SP_GENERIC

#2 InputCreatorScript

InputCreatorScript.sh

#2 RunScript

RunScript.sh

#2 PropertyInfo

turbomole.mpropinfo

The runscript communicates the final result of each single point calculation to MidasCpp by means
of the property info file, which labels the molecular properties. In the present case potential energy
and dipole surfaces are requested and the property info have the following structure:

tens_order=(0),descriptor=(GROUND_STATE_ENERGY)

tens_order=(1),descriptor=(X_DIPOLE),Rot_group=(0),element=(0)

tens_order=(1),descriptor=(Y_DIPOLE),Rot_group=(0),element=(1)

tens_order=(1),descriptor=(Z_DIPOLE),Rot_group=(0),element=(2)

A property is here identified by the associated tensorial order, a label, how the element should
be rotated and the which element of a tensor it is. The two latter options only need to be set of
the tensorial order to higher than one. Task: Try to figure out how the generation of this file is
realized in the RunScript (RunScript.sh), which you can find in the folder InterfaceFiles. The
next input block is used to define the molecular system for which the surfaces is to be constructed.
A file with the molecule information is all that is needed here, containing e.g. reference structure
in Cartesian coordinates, harmonic frequencies, vibrational coordinates.

#1 System

#2 SysDef

9

#3 MoleculeFile

Midas

<pwd>/std_h2o_turbomole_ccsdf12_pt3_mp2dip.mmol

The next input block indicates directly in which directories, (see section 3.2) and how the surface
construction should be performed. The use of the ADGA as surface generation strategy is indicated,
using the electronic structure method previously defined. Furthermore it is indicated that the
surfaces should include up to pair-mode couplings, which in most cases will provide reliable surfaces.
The ADGA uses change in the vibrational density as a guide to where new single points should
be placed for maximum coverage and it isindicated that each of the three vibrational modes in
water should have a basis of four modals when performing VSCF calculations for determining the
vibrational density.

#1 Pes

#2 MainDir

<pwd>

#2 SaveIoDir

<pwd>/savedir

#2 AdgaInfo

2

#2 MultilevelPes

generic_turbomole_spc 2

#2 AnalyzeStates

[3*4]

The next input block specifies how the VSCF calculation should be performed. The VSCF module
needs to know where it can find the current potential energy operator, (which is constructed by
the ADGA in each iteration). The VSCF also needs a primitive basis in which to expand the
modals and in this case a set of B-spline functions with a fixed density is chosen. Furthermore the
wave function is allowed to extend beyond the potential grid boundaries, in order for the ADGA to
investigate if significant vibrational density is found outside of the potential grid, which can then
be expanded.

#1 Vib

#2 Operator

#3 OperFile

<pwd>/savedir/prop_no_1.mop

#2 Basis

#3 BSplineBasis

10

#3 PrimBasisDensity

0.8

#3 ScalBounds

1.5 20.0

#2 Vscf

#1 Analysis

10

The calculation itself might take some time, as something around 1000 single point calculations
are needed in order to converge the surface. After the calculation is completed you can check the
output file. At the bottom you find the VSCF energy obtained for the final potential. If you scroll
up a bit, you should find a block like

11

CC
C C
C Checking Adga convergence for 2-mode grids C
C C
C Number of converged MCs : 3 C
C Number of non-converged MCs: 0 C
C C
C !!! Adga procedure for 2-mode grids is converged !!! C
C C
CC

telling you that the ADGA procedure converged. The objective of this calculation was to obtain
analytical representations of the potential energy and dipole surfaces. They are stored in the folder
FinalSurfaces/savedir. Here you can find the files

• prop_no_1.mop : Analytical representation for the PES

• prop_no_2.mop : Analytical representation for the x component of the dipole surface.

• prop_no_3.mop : Analytical representation for the y component of the dipole surface.

• prop_no_4.mop : Analytical representation for the z component of the dipole surface.

Task: After performing this example, make a similar example with a electronic structure method
and a QCP of your choice. For this purpose take a look at the scripts in the folder InterfaceFiles.

12

Chapter 3

More detailed information

3.1 Advanced installations

There are many ways to configure MidasCpp to accommodate many different systems and architec-
tures. This is handled by the configure script, which sets up an appropriate Makefile.config

for the system in question. For a comprehensive overview of the many options for configuring the
building of MidasCpp executables, run

./configure --help

3.1.1 Compiling with MPI and OpenMP

To compile and run MidasCpp using MPI add --enable=mpi=openmpi to commandline when calling
the configure script

./configure --prefix=/path/to/install --enable-mpi=openmpi

Note that OpenMPImust be available on your system in this case. We recommend to compile and
run MidasCpp using OpenMPI version 3.0.0 or above. It is possible to configure and run with other
MPI implementations, but the use of these has not been extensively tested. After configuration
MidasCpp can be compiled and installed as usual by running

make complete

To run using MPI run midascpp with the mpirun wrapper.

mpirun <mpi_args> --mca mpi_warn_on_fork 0 midascpp <minp> --maindir <maindir>

MidasCppmust always be run with the --mca mpi_warn_on_fork 0 option when running with MPI .
Also note that PES calculations run with MPI should always be run using an ethernet interface,
and not Infiniband or any other fast network if such are available on the system.

Some parts of MidasCpphas been also parallelized with OpenMP . To enable this optimization,
configure with --enable-openmp before compiling.

./configure --prefix=/path/to/install --enable-openmp

Note that using either MPI or OpenMPwill make the code run non-determisticly (like any efficient
numeric code running in parallel), which means that you will not get the exact same result with
two consecutive runs. Of course results are still equally good w.r.t. to numeric thresholds provided
to the calculation.

13

3.1.2 External libraries

MidasCpp also relies on different external libraries, including some optional math libraries that
can be toggled on of off as need be. The MidasCpp build system can determine which libraries are
present, and download and build any missing libraries automatically. Controlling which libraries are
downloaded, and which versions to download is done by configuring with --enable-<library>=<version>,
where providing a version number thorugh <version> is optional. When not providing a version
number a suitable default version will be downloaded. E.g. to download, build and link against a
newer version of LAPACK, configure with

./configure --prefix=/path/to/install --enable-lapack=3.8.0

Linking against all libraries is turned on by default, but the use of all optional libraries can be
turned off using --disable-<library>. This of course disables all features utilizing the disabled
libraries (trying to use a disabled feature will result in a program error). Required and optional
math libraries are listed in 3.1 including minimum recommended versions.

Table 3.1: External libraries

Required
LAPACK http://www.netlib.org/lapack/ 3.6.0

Optional
FFTW http://www.fftw.org/ 3.3.4
GSL https://www.gnu.org/software/gsl/ 1.16
BOOST https://www.boost.org/ 1.68.0

3.1.3 Vector inputs

Some keywords prompt the user to give a vector as input. MidasCpphas implemented a few
shortcuts for defining vectors which might come in handy to avoid typing out long vectors. Usually
the vectors are meant to be space separated unless otherwise stated for the specific keyword, i.e.
the string "1 2 3 5" is read as the vector (1, 2, 3, 5). Multiple separators in a row will be ignored,
i.e. the string "1–2" is read as the vector (1, 2) when ’-’ is used as separator.

The following characters will be treated special, namely ’,’, ’(’, ’[’ and ’\’. To input these
characters, or the separator, use ’\’ combined with the special character or separator, i.e. "1 2 \(
3" would be read as the vector (1, 2, (, 3).

To further tricks can be useful in generating simple input for complex tasks. The first is the
range which is implemented to transform expressions of the type [i..N ; s] to a vector, i is the first
element, N is the end of the range and s is the stride. This results in the string "[1..5;2]" expands
to the vector (1,3,5). Alternatively the stride, s, can be left out and will then by default be 1,
resulting in the string "[1..5]" is converted to the vector (1, 2, 3, 4, 5). The second is the expansion
which takes the following form [n ∗ number] where n is the number of repetitions. This allows the
user to input the following string "[2*5]" which the program translates to (5, 5). The user can also
use a nested range for repetition "[2*[1..5]]" will result in the vector (1, 2, 3, 4, 5, 1, 2, 3, 4, 5).

3.2 Potential energy or molecular property surface calcula-
tions

There are two main strategies towards surface generation available in MidasCpp, namely via
Taylor expansion, see keyword #2 TaylorInfo, or by construction of a grid of single points. In the

14

latter case the grid can be specified by the user prior to a calculation, i.e. a static grid approach,
see #2 Staticinfo, or it can be dynamically constructed with the adaptive density-guided approach
(ADGA), see #2 AdgaInfo.

It is important to carefully consider the mode combination level, (sometimes referred to as
coupling order), before initializing a calculation with any of these surface generation strategies as
this will define the dimensionality of the resulting surfaces. This, in turn, will define the accuracy
and overall computational cost of the surface.

3.2.1 Electronic structure programs

The choice of surface generation strategy does not limit the choice of electronic structure method or
program that can be used in any way. Indeed, MidasCpp is not an electronic structure program but
interfaces with other such programs in order to obtain the electronic energy and/or properties for
individual single points. This means that interfacing to different electronic structure programs is
entirely independent of the surface generation strategy and will only need to be changed if another
electronic structure method or program is desired. The MidasCpp example suite currently features
the use of some standard electronic structure programs but this is by no means a limiting list.

Electronic structure programs featured in the MidasCpp example suite

• CFOUR

• DALTON

• Gaussian

• Orca

• MolPro

• Turbomole

3.2.2 Folder structure

The folder structure used for surface calculations is organized in two levels, first after the number
of subsystems and then after the number of different electronic structure method employed. This
means, that each surface calculation will effectively be a subsystem multilevel surface calculation,
even though only the system might only consist of a single subsystem and only a single electronic
structure method is used.

In the main directory, which is where a surface calculation is started there will be three di-
rectories present, named FinalSurfaces, InterfaceFiles and System. There will additionally be
two soft-link directories present named savedir and analysis. The FinalSurfaces directory will
contain the finished surface(s) of the entire calculation and in case that the system is divided into
subsystems, then the corresponding surfaces will have been merged before placed in the folder.

The System directory contains one or more directories named subsystem_j, j = 0, 1, 2, . . .

depending on how many structures have been defined by the #3 MoleculeFile keyword under
individual blocks defined by the #2 SystemDef keyword. Each subsystem_j directory will contain
two directories named Multilevels and FinalSurfaces.

The Multilevels directory contains one or more directories named level_i, i = 1, 2, 3, . . .

depending on how many and in which order electronic structure methods are specified under
the #2 MultiLevelPes keyword. Note that a directory named level_0 will be present if the
#2 BoundariesPreOpt keyword is in use.

Each level_j, j = 0, 1, 2, . . . directory will contain three sub-directories named savedir,
analysis and setup. The savedir sub-directory contains all collected information related to the
calculated single points, the fitted and/or interpolated surfaces, restart information and properties
related to the molecular structure, e.g. moment of inertia. The analysis sub-directory contains
plots of the fitted and/or interpolated surface, information of the grid boundaries and plots of

15

the mean or maximum density if an ADGA towards surface generation is in use. The setup

sub-directory contains the interface files between MidasCpp and the external electronic structure
program, i.e. a script for generating input, a script for running and a script for validating the
electronic structure program, as indicated through the #2 InputCreatorScript, #2 RunScript and
#2 ValidationScript keywords respectively. There should additionally be a file present that indi-
cates the property or properties that are calculated by the electronic structure program and should
be treated by MidasCpp . This is indicated by the #2 PropertyInfo keyword.

The FinalSurfaces directory will contain two sub-directories, savedir and analysis, which
will contain the final multi-level surface(s) and grid dimensions respectively. If more than one
electronic structure method are in use, then these final files will be merges of the corresponding
files found in the level_i sub-directories according to the specifications given under the #2 Mul-
tiLevelPes keyword. If only one electronic structure method is specified, then the files found in the
FinalSurfaces directory will be identical to those found in the level_1 directory.

The soft-link directories found in the main directory will point to different savedir and analysis

sub-directories in the level_j directories depending on which electronic structure method is used
to generate the surface at a given moment.

Surface calculation folder structure overview

MainDir
(mandatory)

InterfaceFiles
(mandatory)

System
(automatic)

FinalSurfaces
(automatic)

savedir
(soft-link)

analysis
(soft-link)

subsystem_0
(automatic)

. . . subsystem_j
(automatic)

Multilevels
(automatic)

FinalSurfaces
(automatic)

level_1
(automatic)

level_0
(automatic)

. . . level_i
(automatic)

setup
(automatic)

analysis
(automatic)

savedir
(automatic)

16

3.2.3 Commencing a calculation

MidasCppwill in general create all the directories described above but unless the internal electronic
structure input options, specified under the #2 DaltonInput keywords is used, then the MainDir

and InterfaceFiles directories will need to be created before commencing a calculations.
The MainDir directory should contain an input file with the keywords relevant for the desired

calculation in the format detailed in part III of this manual and a file containing information
about the molecular structure, as indicated by the #3 MoleculeFile keyword. The InterfaceFiles
directory should contain four files for each level_j directory specified via the keywords

• #2 InputCreatorScript

• #2 RunScript

• #2 ValidationScript

• #2 PropertyInfo

as indicated above, which will be copied automatically to the associated setup sub-directory. Note
that the validation script is not strictly mandatory but generally recommendable to include.

Note that MidasCppwill automatically create all the additional folder structure and the soft-link
sub-directories if this is not created by the user. Should these directories already be present, then
they will not be deleted or overwritten by MidasCpp but used as they are with what they contain,
e.g. for restart purposes. This furthermore means that for restart calculations, where the folder
structure is already in place, the InterfaceFiles directory is not strictly required.

17

Part II

Theory

18

We outline in the following general aspects of the theory behind the MidasCpp options. In
each section we describe the overall framework about specific aspects of quantum computations on
the nuclear motion of molecules. We describe the key aspects of the implementation with issues
to consider. We define the key references to read and cite for each topic. We give references the
overall program input sections, and refer to the reference manual III for a detailed list of all input
options.

19

Chapter 4

Coordinates

Coordinates is a important part of performing dynamical computations on molecules. For electronic
wave functions Cartesian coordinates are widely used. For nuclei, the set of Cartesian coordinates
of all the nuclei would be strongly coupled, and we would end with the problem of computing
potentials and wave functions for a set of highly correlated variables. Often we can get a much
better starting point by using the right set of coordinates. In some simple cases finding the right
coordinates correspond essentially to solving the problem.

4.1 Normal-Coordinates and harmonic oscillator treatment
of Molecular vibrations

4.1.1 Classical coordinate transformation approach

Often, the molecule can to a good approximation be described as vibrating with small amplitudes
around some equilibrium configuration. Thus, it seems natural, at least in those cases, to describe
the nuclear positions in terms of displacements from this configuration. We shall first consider this
issue classically and then quantize.

The reference configuration is described by the nuclear coordinates R0
P and the nuclear dis-

placements are denoted DP . They are related by

RP = R0
P + DP (4.1)

Since R0
P is time-independent we obtain that the time-derivative of RP is equal to the time-

derivative of DP

ṘP = ḊP (4.2)

The center of mass coordinates defines three constraints on the nuclear displacements. The
approximate separation of rotation from internal motion also gives rise to some criteria. We are
here aiming at describing the internal molecular motion. Thus, there are 6(5) constraints between
the RP with 3 from translation and 3(2) from rotation.

We first introduce the 3N dimensional column vector D containing the Cartesian displacement
coordinates of the atoms

DT = (d1X , d1Y , d1Z , d2X , d2Y , d2Z ,, dNX , dNY , dNZ) (4.3)

20

We next introduce the diagonal 3N × 3N matrix G containing the inverse masses on the diagonal

G =

M−11 0 0
0 M−11 .
. M−11 .
. M−12

. M−12

. M−12

.

.
. .
0 . . . M−1N

(4.4)

The classical nuclear kinetic energy term Tn now can be written as

Tn =
1

2

∑
P

(ṘP)TMP ṘP =
1

2
(Ḋ)TG−1Ḋ (4.5)

As a next step we introduce nuclear coordinates, DM that are scaled with the square-root of the
masses

DM = G−
1
2 D (4.6)

In terms of the DM coordinates we have the following very simple form for Tn

Tn =
1

2
(ḊM)T ḊM (4.7)

In the next step we shall introduce a transformation of these coordinates to a set of coordinates
Q

Q = LTDM (4.8)

where LT is a 3N × 3N transformation matrix. We shall use the transformation from DM to Q
to simplify matters.

Now, the main complication lies in the potential energy term. The kinetic energy term can
hardly be made simpler than the one in Eq.(4.7). We would like at this stage to maintain the kinetic
energy Tn term in the simple form it has. This can be achieved by requiring the transformation
matrix L to be orthogonal. Thus we require

LTL = 1 (4.9)

LLT = 1 (4.10)

With this first condition on L we easily obtain the back transformation

DM = LQ (4.11)

The kinetic energy maintain the simple form in Eq.(4.7) now in terms of the Q coordinates

Tn =
1

2
(Q̇)T Q̇ (4.12)

Up to now we have considered only the kinetic energy for vibration, while the main complexity
actually comes from the potential energy. The choice of L can be used to give the potential energy
in a convenient set of coordinates that simplify the treatment. That is of course impossible for
the most general choices for the potential. However, if we consider the reference condition to
be a minimum for the potential energy a low-order Taylor expansion in the nuclear displacement
coordinates gives (we write the potential as function of D - it is understood that if the potential

21

is given in terms of the RP it is trivial to define a new function with D as argument when the
reference configuration has been defined)

V (D) = V (0) +

Nn∑
P=1

∑
α

dV

dDPα
|0DPα +

1

2

Nn∑
P,Q=1

∑
α,β

d2V

dDPαdDQβ
|0DPαDQβ + (4.13)

Since the reference configuration is chosen to be an equilibrium configuration the linear term
vanishes. Defining the symmetric force-constant matrix F by

FPαQβ =
∂2V

∂DPα∂DQβ
|0 (4.14)

and neglecting terms higher than second order we obtain

V (D)− V (0) ≈ 1

2
(D)TFD =

1

2
(DM)T (GT)

1
2 FG

1
2 DM =

1

2
(Q)TLTG

1
2 FG

1
2 LQ =

1

2
(Q)TΛQ

(4.15)
In Eq.(4.15) we have made use of the fact that the first derivatives vanishes at equilibrium. We have
also used the coordinate transformations in Eqs.(4.6,4.8) and that since G is diagonal (GT)

1
2 = G

1
2 .

We have in Eq.(4.15) introduced the matrix

Λ = LTG
1
2 FG

1
2 L (4.16)

Using the orthogonality of L we obtain

G
1
2 FG

1
2 L = LΛ (4.17)

Since G
1
2 FG

1
2 is a symmetric matrix it can always be diagonalized by an orthogonal matrix giving

real eigenvalues. It is thus in agreement with our previous criteria for the L matrix if we require
Eq.(4.17) to be an eigenvalue problem. The Λ matrix is thereby required to be a real diagonal
matrix with eigenvalues λk = Λkk. The requirement that Eq. (4.17) is an eigenvalue problem
determines only the eigenvectors up to a constant factor. A normalization factor is determined
from the orthogonality constraint earlier discussed leaving only an undetermined phase. From
imposing this eigenvalue criterion we obtain that the second order expanded potential energy
achieves an even simpler form - it becomes a quadratic form without terms bilinear in the Qk

V (D)− V (0) ≈ 1

2

∑
k

λkQ
2
k (4.18)

Often, the eigenvalue problem is formulated as

GF(G
1
2 L) = (G

1
2 L)Λ (4.19)

which is easily obtained from Eq.(4.17) by multiplication with G
1
2 . Diagonalization of GF thus

determines the eigenvalues λk and from the eigenvectors the L matrix is obtained by multiplication
with G−

1
2 . It is usually more advantageous to work with symmetric matrices, and the previous

formulation is from that perspective advantageous.
Since the PES is invariant to translation and rotation, there are 6(5) coordinates that can

be obtained from the cartesian by orthogonal transformation that leaves the V and its second
order expansion unaltered. Accordingly, it can be shown that contributions from translation and
rotation can be separated out and they can be identified as those giving zero eigenvalues in the
above eigenvalue equation.

The total classical vibrational energy of the system described by the second order expanded
potential becomes accordingly

EHO =
1

2

3Nn−6∑
k=1

(Q̇2
k + λkQ

2
k) (4.20)

22

Through a set of coordinate transformations we have obtained the vibrational energy as a sum
of uncoupled harmonic oscillators. This makes an exact treatment possible in both classical and
quantum mechanics which is the motivation for this formulation. The coordinates bringing about
the separation into a set of independent oscillators are denoted normal coordinates.

We should remember that this simple form of the energy applies only for the vibrational part
of the energy in the particular approximation where terms that are higher than second order in
displacement from the reference configuration are neglected. We shall return to the full potential
later. Furthermore, rotational motion and the interaction between vibrational and rotational
motion is not taken into account. These are also important for some spectroscopic studies.

4.1.2 Quantization of the vibrational energy

We can now write the classical equations in terms of general coordinates Q and momenta P

EHO =
1

2

M∑
k=1

(P 2
k + λkQ

2
k) (4.21)

where Pk = Q̇ and M = 3N − 6(5). Making the transition to Quantum Mechanics we have

H =

M∑
k=1

Hk (4.22)

where
Hk = −1

2
~2

∂2

∂Q2
k

+
1

2
λkQ

2
k (4.23)

Each Hk is a one-dimensional harmonic oscillator problem that can be solved by

Hkψ
k
nk

(Qk) = ~ωk(nk +
1

2
)ψknk(Qk) (4.24)

with
ωk =

√
λk (4.25)

and ψknk(Qk) is standard Harmonic oscillator eigenfunctions. Thus, with the total Hamiltonian
as a sum of independent contributions, the total wave function becomes a simple product wave
function

Ψ(Q1, , , , , QM) =

M∏
k=1

ψk(Qk) (4.26)

We have, with some approximations on the way, gone all the way from the basic molecular
Schrödinger to the actual quantum states describing dynamics. In this subsection we found bound
state dynamics in the harmonic approximation.

4.2 Frequency scaled normal coordinates

One may wish to use frequency-scaled coordinates for increased numerical stability. In MidasCpp
this is done in the fitting routine for polynomials and general fit functions. When this is used for
the construction of a PES, this will give a different scaling of the operators in the output, and the
frequency scalingfactor is denoted in the output. The relation between the normal coordinates Q
and the frequency scaled coordinates Q̃ for each mode k is described in the following:

Q̃k =

√
ωk
~
Qk (4.27)

23

Some basic results:
∂2

∂Q2
k

=
ωk
~

∂2

∂Q̃2
k

(4.28)

Hk = −1

2
~2
ωk
~

∂2

∂Q̃2
k

+
1

2
ω2
k

~
ωk
Q̃2
k (4.29)

Hk = ~ωk

(
−1

2

∂2

∂Q̃2
k

+
1

2
Q̃2
k

)
(4.30)

In the standard output MIDAS operator file (see section B.2.2) the resulting fitting coefficients
correspond to coordinates scaled with both frequency and mass. In the following is an example of
how to compare the obtained fit-parameters of a Morse function to the physical parameters for a
diatomic molecule.
A Morse function can be written as:

V (r − re) = De (1− exp (α(r − re)))2 (4.31)

The displacement r−re is the same as the previously introduced displacement vector D = M− 1
2 LQ.

The potential expressed in frequency-scaled normal coordinates becomes:

V (Q̃k) = De

(
1− exp

(
α̃Q̃k

))2
(4.32)

where
α = α̃

√
ω (4.33)

The relevant MidasCpp input for the fit-function may look like:

#4 OptFunc

F(Q,alpha,De) De*(1-EXP(-alpha*(Q)))*(1-EXP(-alpha*(Q))) (0,0.1,0.1)

...// a second Morse-function for a non-standard ADGA calculation:

#4 OptFunc

F(Q,alpha2,De2,disp) De2*(1-EXP(-alpha2*(Q-disp)))*(1-EXP(-alpha2*(Q-disp))) (0,0.1,0.1,0.0)

The electronic dissociation energy De is given directly in a.u.
The α̃ parameter from the .mop file should be scaled with ·√ωkm, where m is the reduced mass
of the molecule and both the frequency and mass is in atomic units. This also assumes that the
vibrational coordinate only changes for one of the two atoms, as defined under "VIBCOORD" in
the input file.

4.3 Semi-numerical gradient-based frequency analysis

MidasCpp is able to calculate and diagonalize the full (or a reduced) Hessian matrix for finding the
normal coordinates (or some of them) of the molecular system at an equilibrium geometry.

At the heart of this lies the ability to calculate the result of a Hessian transformation, i.e. the
result of multiplying the Hessian matrix H and some arbitrary coordinate vector, here denoted bj ,
to get σj = Hbj . (In this section subscripts p, q, etc., shall denote a nucleus, α, β, etc., shall denote
the Cartesian directions x, y or z, while subscripts i, j, etc., simply denotes a certain element (e.g.
a basis vector) of a set. Furthermore H refers to the Hessian of the potential energy V , i.e. it is
equivalent to the force-constant matrix F.)

24

Writing out the multiplication explicitly, we find that the pα’th element of the j’th column
vector of Σ may be calculated (approximately) as

σpα,j =
∑
kσ

hpα,kσbkσ,j (4.34)

=
∑
kσ

bkσ,j
∂

∂dkσ

∂V

∂dpα
(4.35)

= ∇bj

(
∂V

∂dpα

)
(4.36)

≈

(
∂V
∂dpα

)
r0+δeffbj

−
(
∂V
∂dpα

)
r0−δeffbj

2δeff
, (4.37)

where ∇v (f) is the derivative of a function f in the direction of v, and δeff is an effective displace-
ment factor δeff = δ/ ‖bj‖ that accounts for the possibility of bj not being normalized. (δ is set
by #4 DispFactor.)

What (4.37) gives us is a formula for calculating directly a transformed basis vector σj without
having to calculate explicitly the entire Hessian matrix, which would otherwise be necessary if
using (4.34) directly.

Most electronic structure programs calculate the gradient of the potential energy surface at a
point r at a rather modest computational cost compared to calculating the Hessian matrix. The
Hessian transformation of a single vector using (4.37) only requires two single-point electronic
structure calculations with gradients (at the points r = r0 ± δeffbj) and is therefore cheaper than
using (4.34). If calculating all the columns of Σ the cost will be the same though, but as we shall
discuss below we may be able to do with transformations of only some of the basis vectors, if
targeting only one or a few eigenvectors of H.

Note also that (4.37) is a finite difference approximation. With the error scaling as O(δ2eff) we
could expect an infinitesimally small displacement factor to give the most accurate result. Having
said that, a too small value of δeff may in practical calculations, which only employ finite-precision
arithmetics, give cause to large round-off errors if the value of the gradient is not substantially
different in the two points evaluated. It can thus be expected that a compromise must be found
between the displacement factor being too small and too large. The default value of #4 DispFactor
has been found to generally work well for small and medium-sized molecules (tens of atoms).

Having established how to perform a Hessian transformation Ĥ(b) (without explicitly calculat-
ing the entire Hessian matrix), we can further move on to describe the #4 Targeting feature, which
aims at finding the normal coordinate(s) that has/have the largest overlap with some predefined
target coordinates. This is done in an iterative manner.

The scheme of an iterative eigenvalue equation solver is then to begin with a set of nt initial
(orthonormal) trial vectors {bj | j = 1, . . . , k} that are then transformed with Ĥ to yield {σj |
j = 1, . . . , k}, where k = nt in this initial iteration, but in general will be used for denoting the
dimension of the reduced space. We will use the notation

B(k) = (b1, . . . ,bk) (4.38)

Σ(k) = (σ1, . . . ,σk) (4.39)

to denote the matrices with the respective vectors as columns. The reduced k-dimensional Hessian
matrix is then the projection of Σ(k) on the column space of B(k),

H̃
(k)

= B(k)†Σ(k), (4.40)

25

where the tilde is used to denote quantities pertaining to the reduced space. The reduced Hessian
is then subsequently diagonalized;

C̃
(k)†

H̃
(k)

C̃
(k)

= Λ̃
(k)

= diag(λ̃1, . . . , λ̃k), (4.41)

The above equation is for the right-hand eigenvectors. If the transformer/matrix is not symmetric
then there is also an equivalent equation for the left-hand eigenvectors. This can be the case due
to numerical inaccuracies in (4.37). By default the reduced Hessian is made symmetric, but this
can be switched off by #4 NonSymmetricHessian.

When beginning the iterative solving procedure one has decided on some way to focus on a
certain number of solutions to the eigenvalue problem. Various schemes exist, e.g. one could aim for
the neq lowest-lying eigenvalues, or those closest to a certain predefined value. Here the criterion
is to find those with the largest overlap with one or several predefined target vectors.

Regardless of the scheme the reduced eigenvectors are sorted in some well-defined way, and the
neq most desirable ones are chosen for further study, {c̃(k)1 , . . . , c̃(k)neq}. If the columns of B(k) span

the full space, and c̃
(k)
j is an eigenvector of H̃

(k)
, then c

(k)
j = B(k)c̃

(k)
j is an eigenvector of H.

For knowing how close we are to actually having found a solution to the full space eigenvalue
problem, the residual vector

r
(k)
j = Hc

(k)
j − λ̃jc

(k)
j = (Σ(k) − λ̃(k)j B(k))c̃

(k)
j , j = 1, . . . , neq (4.42)

is formed for each of the chosen eigenvectors c̃
(k)
j . The closer r

(k)
j is to being zero the closer c

(k)
j

is to being an eigenvector of H in the full space. We can therefore use the norm of the residual
as measure of how acceptable the solution is – the smaller the better. Another measure that is
frequently used is the (relative) change in eigenvalue between successive iterations of the solving
algorithm. If the (relative) eigenvalue change is small that also signifies that the algorithm has
converged towards an actual eigenvalue. In short the following criteria must therefore be fulfilled
in order for a solution to be accepted;

εres ≥
∥∥∥r(k)j

∥∥∥ , for j = 1, . . . , neq (4.43)

εenergy ≥

∣∣∣∣∣λ
(k)
j − λ

(k−neq)
j

λ
(k−neq)
j

∣∣∣∣∣ , for j = 1, . . . , neq, (4.44)

where εres (#4 ItEqResThr) and εenergy (#4 ItEqEnerThr) are predefined thresholds and (k−neq)

signifies the values obtained in the previous iteration.
If all equations in (4.43) and (4.44) are fulfilled then solution is accepted and the iterative

algorithm is terminated. If not, then the current subspace was apparently not sufficiently large for
describing correctly the sought eigenvectors/-values. Thus, it must be expanded.

For this the residual vectors are chosen, since they already by definition point in the direction in
the full space in which there is a discrepancy between the right- and left-hand side of the eigenvalue
equation Hc

(k)
j = λ̃

(k)
j c

(k)
j . Mode targeting/tracking consists of specifying in advance a set of

target vectors {τi | i = 1, . . . , nt} for which the eigenvectors cj with the greatest overlaps 〈cj |τi〉
are sought. The MidasCpp implementation more specifically proceeds with targeting as follows; in
each iteration the overlap s(k)ij between every target and full space eigenvector is calculated,

s
(k)
ij = 〈τi|c(k)j 〉 = 〈τi|B(k)c̃

(k)
j 〉 = 〈õi|c̃(k)j 〉 , (4.45)

where
õli = 〈bl|τi〉 (4.46)

26

are the overlaps between the targets and the trial vectors. The overlap matrix Õ
(k)

is of reduced
dimensions (k × nt), and since neither the targets or trial vectors change once they have been
added, Õ

(k)
can simply be stored and updated in each iteration. The calculation of the actual

overlaps in the k’th iteration is then a simple manner of performing the matrix multiplication

S̃
(k)

= (Õ
(k)

)†C̃
(k)
. (4.47)

The overlap sum for each target in the k’th iteration, S(k)
i , is defined as

S
(k)
i =

noverlap,i∑
j=1

(
s
(k)
ij

)2
. (4.48)

If noverlap,i = k and the target τi is spanned by the set of trial vectors (which is usually
the case, since the targets are used as the initial trial vectors, at least in this implementation),
then S

(k)
i = 1. However, not all terms will be equally large, with some of them probably being

substantially greater than others, and for expanding the subspace further we are only interested
in those that highly contribute to the overlap. The idea of the “overlap sum” strategy is then the
following;

• for each target τi, sort the the eigenvectors c̃
(k)
j so that s(k)i1 , s

(k)
i2 , . . . , s

(k)
ik is a decreasing

sequence.

• set noverlap,i to the be the lowest integer that makes the overlap sum larger than a predefined
threshold, S(k)

i ≥ εoverlap (#4 OverlapSumMin).

• Then use the residuals of those eigenvectors when expanding the subspace with new trial
vectors.

The above procedure applies to all of the targets given, but a given eigenvector should of course
only be included once in the set from which the new trial vectors are made. But any given eigenvec-
tor is still allowed to enter the overlap sum for several targets. A further modification that has been
implemented in MidasCpp is that one can set an upper bound, noverlap,max (#4 OverlapNMax), to
noverlap,i, thus allowing for greater control of how many trial vectors are added to the subspace in
each iteration. Note that in the limiting case that one sets noverlap,max = 1 and εoverlap = 1 the
result will be the single eigenvector that overlaps best with each target.

4.4 Optimized coordinates

There can be significant gain in the use of optimized coordinates, that is coordinates what are
optimized by some kind of variational procedure. With the right set of coordinates the PES
construction may require fewer points, and the anharmonic wave function may be computed faster.
Furthermore, for interpretation purposes optimized or "quasi-local" coordinates may be convenient
for interpretation also.

4.4.1 Optimized Coordinates

The computation of optimized coordinates relies on the ability to efficiently compute the VSCF
energy. Following past work optimized coordinates have been implemented in MidasCpp. [2, 3]

27

Consider to cite:

1. B. Thomsen, K. Yagi, O. Christiansen, “Optimized coordinates in vibrational coupled
cluster calculations”, Journal of Chemical Physics 2014, 140, 154102–124101–15

2. B. Thomsen, K. Yagi, O. Christiansen, “A simple state-average procedure determin-
ing optimal coordinates for anharmonic vibrational calculations”, Chemical Physics
Letters 2014, 610–611, 288–297

4.4.2 On PES forms appropriate for Optimization of Coordinates

It should be noted, that the exact energy is invariant under the choice of coordinates. However, the
quality of approximate energies and wave functions will depend on the choice of coordinates. Thus,
the optimization is a way to improve approximate treatments by providing better convergence to the
exact results, and to obtain wave functions that in more concise manners represent the important
physical effects. It is important that the Hamiltonian is in a form that is invariant under the
transformation. Obviously the exact Hamiltonian is invariant, but approximate potentials are
not necessarily invariant. One example that is invariant is a Taylor expanded force field such as
a quartic force field, motivating this choice in the particular examples. An example that is not
invariant is a many-mode expansion of the potential truncated to an order less than total number
of modes.

4.4.3 State-average Optimized Coordinates

The outcome of the coordinate optimization procedure depends on the energy quantity to be
optimized, and thereby the state. Typically the VSCF ground state energy is used, making the full
procedure variational. A generalization aiming at including more than one state in the optimization
is described in Ref.[3]

Consider to cite:

1. B. Thomsen, K. Yagi, O. Christiansen, “A simple state-average procedure determin-
ing optimal coordinates for anharmonic vibrational calculations”, Chemical Physics
Letters 2014, 610–611, 288–297

4.4.4 Hybrid Optimized and Localized Coordinates

Another possible set of coordinates are hybrid optimized and localized coordinates as described
in Ref.[4]. This set of coordinates is as optimized coordinates obtained from normal coordinates
through an extra orthogonal transformation. In this case it is a hybrid measure that is optimized,
including both the energy and a measure of locality.

Consider to cite:

1. E. L. Klinting, C. König, O. Christiansen, “Hybrid Optimized and Localized Vibra-
tional Coordinates”, The Journal of Physical Chemistry A Nov. 2015, 119, 11007–
11021

28

4.5 FALCON: Flexible Adaptation of Local Coordinates Of
Nuclei

Another algorithm for construction of localized coordinates is Falcon. Its distinct feature lies
within an iterative procedure, which allows to generate purely vibrational rectilinear coordinates
with well-defined locality at desirable parts of the molecule. The approach starts from small groups
of atoms and iteratively fuses them into larger groups projecting out translational and rotational
degrees of freedom at each step. The procedure is controlled by coupling estimates between such
fusion groups and can be run in a black-box manner. The resulting coordinates can be divided
into two types: i) fully localized at parts of the molecule and ii) inter-connecting. The latter are
constructed from local degrees of freedom and describe relative vibrations of the fused groups. The
coordinates are then relaxed by diagonalizing the corresponding reduced mass-weighted Hessian
matrices keeping a local character at the fusion groups. The use of these strictly local coordinates
is especially beneficial with incremental-type expansions of PESs (for details, see Sec. 5.3.7).

Consider to cite:

1. C. König, M. B. Hansen, I. H. Godtliebsen, O. Christiansen, “FALCON: A method
for flexible adaptation of local coordinates of nuclei”, Journal of Chemical Physics
2016, 144, 074108

29

Chapter 5

Potential energy surfaces

5.1 Potential energy surfaces - general aspects

Given the Born-Oppenheimer approximation the concept of a potential energy surface is clear.
From solving the electronic Schrödinger equation using fixed nuclei that provides an attractive
electrostatic field for the electrons, we obtain an electronic energy (including the nuclear-nuclear
repulsion energy by convention) that depends on the relative position of the nuclei. This energy
can in the Born-Oppenheimer approximation be considered as a potential in which the nuclei
movies. Thus, the features of the relevant potential energy surfaces dictate the dynamics of the
system. A theoretical understanding of the dynamics of a molecular system therefore relates to
the potential energy surface .

The solution of the electronic Schrödinger equation to obtain the potential energy surface is
a topic of electronic structure theory. Advanced quantum mechanical theories for the electronic
structure of molecules in the gas phase have been developed over the years. They have been
implemented in efficient computer programs that are widely distributed and used by specialists
and non-specialists. Using such programs one can obtain reliable predictions of many different
types of molecular properties including molecular structures. However, the actual calculation of
dynamics is another issue as is the construction of potential energy surfaces.

The solution of the electronic Schrödinger equation is not discussed further here. The finer
details of the electronic structure are unimportant for the discussion here, and, first of all, treated
in other texts and courses. It is rather assumed that theories and computer programs are available
that can provide an approximate (but not to approximate) solution to the electronic problem for
a given structure. To construct and use such theories and programs is in no way trivial, and
any error made in this step penetrates to the prediction of the dynamics. However, we focus on
characteristics of potential energy surfaces, what are the problem in knowing them, and how we can
actually extract some important information about the potential energy surface without knowing
it!

The PES is needed for discussing motion on the PES. Some basic QM wave function models are
assumed later. Also in this chapter a basic classical mechanic view can sometimes be very helpful.
Anyhow, motion on a PES is discussed in a later chapter.

In figure 5.1 a model potential energy surface as function of two variables is given. Throughout
we shall return to this figure and explain various features.

30

Multi-dimensional potential energy surfaces

Figure 5.1: A model potential energy surface illustrating important stationary points and curves.
(from Jack Simons:Introduction to theoretical chemistry)

5.2 The potential energy surface as a function of many vari-
able

The potential energy surface gives meaning to several different concepts including molecular struc-
ture and vibrations. In this section, we consider some properties of a single PES. We shall not be
concerned with electronic states that are degenerate because of high symmetry of the system, but
focus on more general aspects.

Some basic features of a PES are

• The potential is determined from the time-independent electronic Schrödinger equation.

ĤelΦelI (r; R) = EelI (R)ΦelI (r; R) (5.1)

Ĥel = T̂e + V̂ee + V̂en + V̂nn (5.2)

• We can think of the potential as being a scalar function of the nuclear coordinates i.e.,
V = EelI (R). For each value of the nuclear coordinates EelI (R) has one value for each
electronic state.

• Each electronic state has its own potential energy surface

• We can think of the potential energy as a function of Cartesian coordinates. However,
it is often preferable to think of it as a function of other coordinates that describe the
internal arrangement of the atoms. Thus, we can generally think of the PES as a function
of some coordinates qi that can be internal coordinates like bond-lengths, angles etc, normal

31

coordinates (see also later), or some other set of coordinates. If there are N atoms it is known
that it takes three degrees of freedom to describe overall translation and three to describe
overall rotation (two for a linear molecule). This leaves us with M = 3N − 6(5) coordinates
describing the internal degrees of freedom.

• V (q1, q2,qM) is called the potential energy surface. In reality it is never a surface since
this correspond to M = 2. If N = 2 we have a linear molecule and M = 1 and we have that
the potential energy "surface" is really a function of only one variable. Thus, it is rather a
function or a curve. The electronic energy is a 3N-6(5) dimensional hyper-surface in a space
of 3N-5 dimensions. We can only visualize a 2D-surface in 3D-space - but must remember
that the full coordinate space is of dimension 3N-6(5). So what we can look at is only cuts,
meaning that some coordinates have a prescribed value, while others are varying freely.

It is generally impossible to know the PES. First, we recall that we cannot solve the electronic
Schrödinger equation exactly (except for Hydrogenic atoms and ions). While there are many
approximate electronic structure methods it should be understood that they do not define an ana-
lytical expression for V (q1, q2, ...qM) but only a theory and a computational method for calculating
individual points of the PES. Thus, we can know the values for a given set of structures, but not
the function itself.

Having at our hand theories and computational methods for carrying out electronic structure
calculation for a given structure, cant we just calculate the potential on a grid of points and thereby
generate the potential numerically? For example, we introduce for each coordinate a discrete set
of G points with values qi = qi,1, qi,2,qi,G. While calculating the potential for some points is our
only way to knowing something about the potential, it is not a realistic approach in its simplest
variant for larger molecules with more than four atoms. If we have M dimensions, then a simple
grid with G points in each dimension will give GM points, since the M variables must be varied
independently. For ten points per degree of freedom corresponding to G = 10 (which is a realistic
but modest number) we easily see that even for a five atomic nonlinear molecule with M=3*5-
6=9 this gives us 109 points. A single electronic structure calculation takes of order a second
to say months of CPU time depending on accuracy, molecular size, etc. Clearly, such a simple
direct-product will generally not be a realistic approach.

Thus, our working condition in interpreting molecular structure and dynamics is that we have
put a function, the PES, in a central role, even if we don’t know it and, from the complexity point
of view, it is a quantity that we cannot really expect to know fully for polyatomic molecules. We
shall now demonstrate that one can in some automatic ways navigate potential energy surfaces
and extract some essential aspects. More generally, one can define some ways of focusing the PES
construction on the most important part.

5.3 Approximate representation of potential energy surfaces

In this section we consider various representations of the potential energy operator for internal
motion. Out focus is in first hand on the vibrational motion, e.i. bound states. We describe
restricted mode representations as well as Taylor-expansions in the normal coordinate representa-
tions and discuss pros and cons. Our focus is on the potential. The very same principles can be
used for other properties, such as for example the dipole-moment surfaces relevant for calculation
of transition probabilities for molecules interacting with light.

The potential for theM normal coordinates is a multiplicative operator and in general a function

32

of all M normal coordinates simultaneously

V̂ = V (q1, q2, ..., qM) (5.3)

However, the inclusion of full coupling between all modes becomes prohibitively complicated when
the number of modes become large. Furthermore, not all couplings are equally important. Analysis,
simplification, and approximations are thus in general needed to proceed. We therefore in the
following try to investigate different routes for doing so.

5.3.1 Taylor expansion of the potential

A rather obvious idea for the representation of the potential is to expand the potential around
some minimum using ordinary Taylor expansions and truncate this expansion at some order Nt

V (q) = V (0) +

Nt∑
n=1

1

n!

∑
i1i2,...in

∂nV

∂qi1∂qi2 ...∂qin
qi1qi2 ...qin (5.4)

Consider now matrix elements of basis functions in the M−mode space that are in a direct
product form, also called a Hartree-product. Thus we assume

|Φr〉 =

M∏
m=1

φmrm(qm) (5.5)

where the different one-mode functions φmrm(qm) are assumed orthonormal. Matrix elements over
the Taylor expanded potential becomes

〈Φr|V |Φs〉 = V (0)〈Φr|Φs〉+

Nt∑
n=1

1

n!

∑
i1i2,...in

∂nV

∂qi1∂qi2 ...∂qin
〈Φr|qi1qi2 ...qin |Φs〉

= V (0)δrs +

Nt∑
n=1

1

n!

∑
i1i2,...in

∂nV

∂qi1∂qi2 ...∂qin

M∏
m=1

〈φmrm(qm)|q
∑n
j=1 δijm

m |φmsm(qm)〉(5.6)

The attractive feature with such potentials is clearly that the multidimensional integrals factorize
into products of one-dimensional integrals. One-dimensional integrals is simple to evaluate in
numerical calculations, should analytical expressions not be available.

The problem with Taylor expansions is that they cannot in general be expected to be convergent
(most likely the contrary). A Taylor expansion represent the view on a PES as seen from a single
expansion point and its derivatives. Thus, the expansion may be less well-motivated if we for
example seek an accurate description away from equilibrium, or the molecular motions are far
away from equilibrium. Thus, a one-center Taylor expansion is fully unsatisfactory for studying
reactions. For molecular vibrations Taylor expansion the case is seemingly more favorable. Thus,
if the molecular is fairly "rigid" meaning in other words that the second derivative terms of the
Harmonic oscillator treatment covers most of the motions and the distortion away from equilibrium
is after all minor, the Taylor expansion seemingly have a case. Therefore it has been successfully
applied in perturbation theoretical improvements on the normal-coordinate harmonic oscillator
treatment of molecules. However, for more general (higher) vibrational states and less rigid systems
the Taylor expansion is less satisfactory. In fact, for explicit wave function calculations of the
nuclear motion with higher and systematic accuracy, the Taylor expansion should be used with
some caution. Away from the expansion point the Taylor expansion is unbound and it is typical
that the potential contains artificial "holes" where a variational calculation will go astray. Thus
the wave functions for nuclear motion will, artificially, tunnel through such artificial walls and fall
into artificial holes and give nonsense results.

33

Generalized product form of the Hamiltonian

The simplifying feature of the Taylor expanded Hamiltonian comes from that it a sum over prod-
ucts. A general sum-over-product (SOP) Hamiltonian can be written as a sum over P product
terms.

Ĥ =

P∑
p=1

cp

M∏
m=1

ĥpm (5.7)

giving a similar simple structure of the matrix elements.

〈Φr|Ĥ|Φs〉 =

P∑
p=1

cp

M∏
m=1

〈φmrm(qm)|ĥpm|φmsm(qm)〉 (5.8)

In general, the sum over product form has some advantages and disadvantages. The most obvious
disadvantage is that it is clear the potential does not come out in this particular form from solving
the electronic structure problem for different arrangements of the nuclei. There is as such not
much indicating that it should be particularly attractive from that perspective. However, one can
turn this around. It is seemingly so that we will never obtain an accurate analytical form for
the operator. We will have to do with various intermediate realizations. They can be based on
defining the potential through its values on a grid of points directly. Or it could include the sum
over product form in Eq. 5.7 as an intermediate numerical step. As an intermediate numerical
step one can argue that 1) there is lacking knowledge of a convenient form that in general will
be significantly better, 2) the form includes the simpler Taylor expansion as special case; and 3)
it is computationally a very advantageous form for the operator. In particular, the product form
of the matrix element over Hartree Products given in Eq.5.8 is crucial for efficient wave function
calculations.

5.3.2 Restricted mode coupling

We now try to define a sequence of approximate potentials providing a more and more accurate
description of the full coupling by including more and more mode-couplings. We will thus in the
simplest approximation include only single mode terms in the potential, in the next approximation
only single and pair-mode terms, and so on, leading to a set of approximations denoted V (1), V (2),
....., V (M).

For this purpose we define the sequence of potentials where only one, two, etc up to M coor-
dinates are different from zero

V m1 = V (0, ..., 0, qm1
, 0, ..., 0) (5.9)

V m1m2 = V (0, ..., 0, qm1 , 0, ..., 0, qm2 , 0, ..., 0) (5.10)

etc. The mode number indicesmi runs from mode 1 to mode M. However, we require thatm1 6= m2

and so on. The last potential in this sequence

V m1m2,...mM = V (q) (5.11)

is equivalent to the exact potential since all indices must be different. We will generally denote
these potentials as Vmn where mn is an n-dimensional vector of indices m1,m2, ...,mn. A set of
mode numbers, m = {m0,m1, . . .} will in the following be denoted a mode combination (MC).
Note that the Vmn are symmetric with respect to permutation of the mi indices and accompanying
coordinates. For example

V m1m2(qm1
, qm2

) = V m2m1(qm2
, qm1

) (5.12)

34

These potentials are individual contributions that can be combined into the desired sequence of
potentials. By summing over all modes, for example summing V m1,m2 over all pairs (m1,m2), we
ensure that all modes are treated equivalently. However, we thereby also introduce over-countings.
For example, for the sum over all mode pairs we have when one of the coordinates is zero

M∑
m1<m2=1

V m1m2(qm1 , qm2 = 0) =
∑
m1

V m1(M −m1) (5.13)

A summation over mn denoted with a double prime refers to a restricted summation over the
m indices ∑

mn

′′
=
∑
m1

∑
m2>m1

....
∑

mn>mn−1

(5.14)

while a single prime denotes not-equal-to summation convention∑
mn

′
=
∑
m1

∑
m2 6=m1

....
∑

mn 6={mn−1,mn−2,...,m1}

(5.15)

The over-counting problem originates from the fact that if one or more of the coordinates in
Vmn is zero on obtains the same result as a lower mode-combination. For example Vmn(qmn =

0) = Vmn−1 . Therefore, we consider a set of potentials V̄mn closely related to Vmn that per
definition satisfies that they give zero if any coordinates are zero

V̄mn(..., qi = 0,) = 0 (5.16)

For example,
V̄ m1(0) = 0 (5.17)

V̄ m1m2(0, qm2) = V̄ m1m2(qm1 , 0) = 0 (5.18)

The V̄mn is related to Vmn such that they separate out the term where redundancies are present.
That is, we require

Vmn = V̄mn +

n−1∑
n′=1

∑
mn′

Cmn′ V̄mn′ (5.19)

where the indices in mn′ is restricted to those present in mn. The Cmn′ coefficients are determined
by the conditions in Eq.(5.16). We obtain in this way

V m1 = V̄ m1 (5.20)

V m1m2 = V̄ m1m2 + V̄ m1 + V̄ m2 = Sm1m2(V̄ m1m2 + 2V̄ m1) (5.21)

V m1m2m3 = V̄ m1m2m3+V̄ m1m2+V̄ m1m3+V̄ m2m3+V̄ m1+V̄ m2+V̄ m3 = Sm1m2m3(V̄ m1m2m3+3V̄ m1m2+3V̄ m1)

(5.22)
Here Smn is an operator that symmetrizes with respect the n m-indices. For example

Sm1m2F (m1,m2) =
1

2
(F (m1,m2) + F (m2,m1)) (5.23)

In general

Vmn = Smn

n∑
n′=1

(
n
n′

)
V̄mn′ (5.24)

Eq.(5.24) can be seen in the following way: For a given n Vmn can contain contributions from all
V̄mn′ where n′ = 1, 2, .., n. The n′ = n term is obvious. For a given n′ contribution we have in V̄mn′

n′ coordinates that are non-zero and n−n′ coordinates that are zero. The n′ non-zero coordinates

35

can be selected in
(

n
n′

)
ways. The operator Smn generates the different permutations of indices

necessary. The examples above exemplify the formulae.
One can prove that

V̄mn = Smn

n∑
n′=1

(−1)n−n
′
(

n
n′

)
Vmn′ (5.25)

From the V̄mn we can define the potential functions

∆V (n) =
∑
mn

′′
V̄mn (5.26)

We have for example
∆V (1) =

∑
m1

V̄ m1 (5.27)

∆V (2) =
∑
m1

∑
m2>m1

V̄ m1m2 (5.28)

The terms V̄mn depends on n coordinates and are per definition taken as a linear combination of
the Vmp potentials of Eqs.(5.9-5.11) for p ≤ n. From the definition of V̄mn the potential ∆V (n)

is zero unless n and exactly n coordinates are different from zero. We can thus obtain the k-mode
coupling representation of the potential as

V (k) =

k∑
n=1

∆V (n) (5.29)

In this manner we have defined the sequence of potentials

V (1), V (2), V (3),, V (M) (5.30)

which is guaranteed to converge to the exact potential. The Vmn terms can - due to the over-
counting of the lower mode couplings - not be expected to become smaller with increasing n. Yet,
in many ways, the physical higher mode couplings can be expected to be smaller compared to
lower-mode couplings. This physical situations is thus not directly revealed in this expression for
V (k). However, the potentials ∆V (k)

∆V (1) = V (1) (5.31)

∆V (k) = V (k) − V (k−1) for k > 1 (5.32)

will for a given k provide the new effect included from the k-mode coupling and only k-mode
coupling.

In practical terms the useful aspect is that the construction of V (k) can proceed through
Eq.(5.26). We can thus generally write the potential as a sum over contribution from different
MCs where for each MC the contribution is in the form of a bar potential, that in turn is obtained
from the appropriate linear combination of "cuts" of the original potential with only some coordi-
nates non-zero. A specific approximation or representation of the potential is therefore defined by
exactly which MCs are included.

We may talk about the mode-combination-range (MCR) of the potential, meaning the set of
MCs which are included in the potential,

V =
∑

m∈MCR[V]

V̄m (5.33)

This rewrite shows that the formulation is flexible and general with respect to inclusion of MCs.
There is no double prime in the sum as the sum over MCs in the MCR is assumed to include the
relevant MCs one and only one time. In many contexts the MCR will be defined to the full set of
one and two-mode couplings, or in general up to n-mode couplings. However, one can in principle
include and leave out couplings in a flexible way using the bar potentials.

36

Interpolation and fitting procedures

The restricted mode representation of the Hamiltonian is not directly of a sum-over-products form.
Fitting to a direct product of one-mode functions implicitly casts the vibrational Hamiltonian to
a sum-over-products form,

Ĥ =

T∑
t=1

ct

M∏
m=1

ĥm,t (5.34)

The kinetic energy operator will be discussed in the next subsection. For the potential part the
overall idea is that in the absence of an analytical form we will have to either use a grid approach
or an intermediate analytical representation. This intermediate analytical representation might as
well be the convenient direct product form. This can be done with fitting. Here it is important to
appreciate that the MC expansion allows us to fit small pieces at a time, as opposed to fitting the
full PES.

To be concrete a straightforward approach is to perform a n-dimensional linear least-squares fits
in a direct product polynomial basis of the V̄mn functions. For numerical reasons often the scaled
normal coordinates are used yi =

√
ωiQi, reducing round off errors when fitting to high-degree

polynomials. The size of the direct-product basis grows exponentially with the mode-coupling
level n of the particular V̄mn potential. This affects the computational efficiency of the vibrational
structure calculations as the number of terms in the potential increase similarly. This can be
limited slightly by using cut-offs to limit the total degree of the polynomial basis set used in the
fitting procedure. Thus, in the fit of the form:

V̄mn =
∑

i1,i2,...,in

ci1,i2,...,iny
i1
m1
· · · yinmn (5.35)

the summation can be restricted with ik ≤ Nk, (k = 1, . . . , n) as the only restriction or with the
additional constraint

∑
k ik ≤ N .

The set of points fitted can be a set of numbers from original electronic structure calculations.
Or alternatively it can be a set of points obtained from an interpolating function constructed from
a smaller set of points or from a smaller set of points supplying also derivatives of the energy. The
set of points which are used as input date for the fit is typically also a direct product grid.

We may in different context choose to emphasize different aspects of the sum of products of
one-mode operators. E.g. we can write the operator as

H =
∑
n

∑
m0<m1<...<mn−1

∑
o1,o2,...,on−1

c
o0o1···on−1
m0m1···mn−1 h

m0o0 hm1o1 · · · hmn−1on−1 , (5.36)

Approximate operators can be described by setting the appropriate coefficients to zero. Here hmioi

is a one-mode operator for mode mi of type oi. Thus we imagine that for each mode there is a
restricted set of types of operators. The gain here is that in wave function calculations one only
has to address the action of a limited number of one-mode operators to the wave function. In
other word, the catch is that in the fitting of all mode-couplings it can be advantageous to have a
common and limited basis of one-mode operators, like e.g. the operators qim.

5.3.3 Building the potential through its values on a grid

Consider as a first step a grid approach where one discretizes each qm coordinate using g single
points. In this case gM = exp(Mln(g)) points are needed to map out the full M -mode PES. The
exponential increase in the number of points with increasing M makes this presently unrealistic
for M larger than 6, making larger than 4-atomic molecules out of reach in full dimensionality.

37

Nevertheless, one would like to be able to construct potential energy surfaces and generally
molecular property surfaces in a cost-efficient and hopefully sufficiently accurate manner. In the
restricted mode-coupling approach of the previous subsections each mode coupling will be repre-
sented as a direct product grid of points, however each mode-coupling is of (much) lower dimen-
sionality than M . The number of required points will be dominated by the computation of the
highest n-mode couplings included in the molecular PES

Npoints =

n∑
k=1

(
M
k

)
gkk (5.37)

Here gk is the number of single points per direction in the generation of the direct grid at level
mode-coupling level k. The gkk factor can be significant but the M scaling is determined by the(
M
k

)
factor being roughly of order Mk for k << M . Clearly, bringing the worst scaling down

to low order polynomial (Mngnn) is a tremendous improvement compared to gM . The choice of n
and the effective gn are now the rate-determining factors.

5.3.4 Midas PES construction methods

MidasCpp allows the construction of potential energies and property surfaces based on various
methods that are based on the general aspects above.

5.3.5 Taylor expansion

Following section 5.3.1 MidasCpp can employ arbitrary order Taylor expansions to compute po-
tential energy and property surfaces as described in Ref. [6]

Users should be aware that the due to its limited radius of trust the use of Taylor expanded PES
can give quite dramatic failures when combined with advanced vibrational wave functions. The
advanced wave function can simply detect "holes" and nonphysical cornes of the Taylor potential
giving non-physical results. On the other hand, for some molecular properties a low order Taylor
expansion may be fully adequate.

Consider to cite:

1. J. Kongsted, O. Christiansen, “Automatic generation of force fields and property sur-
faces for use in variational vibrational calculations of anharmonic vibrational energies
and zero-point vibrational averaged properties”, J. Chem. Phys. 2006, 125, 124108–
16

5.3.6 Static grids expansion

With the framework of the mode-coupling expansion/n-mode expansion of the previous sections
one can manually define the grid and manually adjust grid sizes and densities in different mode-
coupling levels as well as employ interpolation approach. This so called static grid implementation
is described in Ref.[7] and for use of energy derivatives, in Ref.[8].

38

Consider to cite:

1. D. Toffoli, J. Kongsted, O. Christiansen, “Automatic generation of potential energy
and property surfaces of polyatomic molecules in normal coordinates”, J. Chem. Phys.
2007, 127, 204106–14

2. E. Matito, D. Toffoli, O. Christiansen, “A hierarchy of potential energy surfaces con-
structed from energies and energy derivatives calculated on grids”, J. Chem. Phys.
2009, 130, 1341041–13

5.3.7 Double incremental expansion

The double incremental expansion exploits ideas of restricting mode–mode couplings (as described
in Sec. 5.3.2) and fragmentation of the molecule into subsystems. Therefore, this approach ad-
dresses both scaling problems: i) an increasing dimensionality of PESs with the system size and
ii) a scaling of single-point electronic structure calculations. Being applied together with localized
Falcon coordinates (for details, see Sec. 4.5), it significantly reduces the overall computational
cost giving rise to the so-called double incremental expansion in Falcon coordinates (DIF) ap-
proximation [9]. A further reduction of the computational cost is possible if remaining non-local
coordinates are represented approximately by an auxiliary set of coordinates with a purely local
character. This can be done using the double incremental expansion in FALCON coordinates with
auxiliary coordinate transformation (DIFACT) approach [9].

In order to derive a doubly-incremented form of the potential energy surface, we first need to
consider the total energy of the molecular system E. Assuming that the supersystem is divided
into N subsystems, the expression for the energy can be written as

E = E(z1, z2, ..., zN), (5.38)

where zi represents particular conformations of subsystems. In these notations, zi = 0 means that
no atoms of the subsystem i are present in the considered conformation. In a similar way as was
done in Sec. 5.3.2, we can define a sequence of functions

Ef1 = E(0, ..., 0, zf1 , 0, ..., 0), (5.39)

Ef1f2 = E(0, ..., 0, zf1 , 0, ..., 0, zf2 , 0, ..., 0), (5.40)

etc. Here, the former expression corresponds to the total energy of a single subsystem f1, while the
latter is the total energy of two interacting subsystems f1 and f2. We set E(0, ..., 0) to be equal
to zero. Then, in a full analogy to Eq. (5.44), the expression for the total supersystem energy E
can be written as

E =
∑

fl∈FCR[E]

Efl
, (5.41)

where fl is a fragment combination (FC) from a fragment combination range (FCR). Note that the
equality holds only if the summation runs over all possible FCs of the full FCR.

The relation between the total potential V (q) and the total energy E(z) is given by

V (q) = E(z(q))− E(r0), (5.42)

where E(r0) is the energy of the reference structure. By expanding both terms at the right-hand
side of Eq. (5.42), we obtain

V (q) =
∑

fl∈FCR[E]

Efl
−

∑
fl∈FCR[E]

Efl
(r0,fl) =

∑
fl∈FCR[E]

∆Efl
. (5.43)

39

Here, r0,fl is the reference conformation of FCs fl. Finally, expanding in a similar fashion a sub-
potential Vmn′ from Eq (5.25) and inserting the resulting expression into Eq. (5.44), one obtaines
the doubly-incremented form of the total potential,

V = Smn

n∑
n′=1

(−1)n−n
′
(

n
n′

) ∑
fl∈FCR[E]

∆E
mn′
fl

. (5.44)

Consider to cite:

1. C. König, O. Christiansen, “Linear-scaling generation of potential energy surfaces
using a double incremental expansion”, J. Chem. Phys. 2016, 145, 064105

5.3.8 The Adaptive density guided approach

The Adaptive density guided approach (ADGA) is an iterative technique to building the PES
and property surfaces.

The advantage is that much manual work is avoided and instead a few thresholds is introduced.
These are based on converging the product of the potential times wave function density to stability
in intervals.[10] Extensions allows for multilevel approaches where electronic structure information
at different levels are used at different levels of mode combination. [11]. The most recent update
to ADGA allows any fit basis to be used and various approaches to finding the grid boundaries,
see Ref.[12].

Consider to cite:

1. M. Sparta, D. Toffoli, O. Christiansen, “An Adaptive Density-Guided Approach for
the generation of potential energy surfaces of polyatomic molecules”, Theor. Chem.
Acc. 2009, 123, 413 –429

2. M. Sparta, D. T. I.-M. Høyvik, O. Christiansen, “Potential energy surfaces for vibra-
tional structure calculations from a multiresolution adaptive density-guided approach:
implementation and test calculations”, J. Phys. Chem. A 2009, 113, 8712–8723

3. E. L. Klinting, B. Thomsen, I. H. Godtliebsen, O. Christiansen, “Employing general
fit-bases for construction of potential energy surfaces with an adaptive density-guided
approach”, The Journal of Chemical Physics Feb. 2018, 148, 064113

40

Chapter 6

Wave-functions for nuclear motion
for systems with many degrees of
freedom: An overview

We shall intially discuss a few aspects about wave functions for many degrees of freedom. We do
this initially with emphasis on time-independent theory, but somewhat similar considerations also
applies in time-dependent theory.

6.1 Introduction, notation, and the scaling problem

The number of modes (or degrees of freedom) are denoted by M . We shall usually use m,m′,m′′

as indices for the modes. We use φmsm(qm) to denote the one-mode function sm for mode m. The
dimension of the basis for mode m is Nm. The set of basis functions for mode m is

{φmsm(qm), sm = 1, Nm} (6.1)

The individual basis functions in this basis are one-mode functions in the different modes and there
is no restrictions on similarity or di-similarity between the basis functions for the different modes.
The basis functions are orthonormal in the sense

〈φmrm(qm)|φmsm(qm)〉 = δrmsm (6.2)

Note that for the electronic problem the set of basis of functions is the same for all electrons
since the electrons are indistinguishable. Here, we may speak of the different modes individually
and each may have its own basis. We denote the one-mode functions for modals.

Consider now the system of M modes described in the above basis. In the following we shall
work with M -mode wave functions constructed from products of the above one-mode wave func-
tions. A simple product of one-mode wave-functions will be specified by a vector s of indices
specifying the relevant one-mode function for each mode. We use the following notation

Φs(q) =

M∏
m=1

φmsm(qm) = φ1s1(q1)φ2s2(q2)....φMsM (qM) (6.3)

The s vector is an index vector in the M -dimensional index space. In this way we have built a
direct-product space for the M -mode system. We will denote such product functions as Hartree-
Products.

41

A general wave-function in the M -mode space can be written as a linear combination of the
direct-product functions

Ψc(q) =
∑
s

csΦs =

N1∑
s1

N2∑
s2

...

NM∑
sM

cs1s2...sMΦs1s2...sM (q1, q2, ..., qM) (6.4)

The wave-function is thereby completely specified in terms of the vector c in the space spanned
by the Φs(q). The exact wave-function to the “vibrational problem" (the problem of treating
N distinguishable particles in a potential) is obtainable as a limiting case with (i) a complete
one-mode basis, (ii) an untruncated M -mode function in Eq.(6.4).

From the above general wave-function we see clearly the problem in doing quantum dynamics
for many degrees of freedom. The dimensionality of the problem is equal to the number of C
coefficients in the above sum. Assume for simplificty that all modes are treated with a basis of
the same size, Nb. Then the number of coefficients are NM

b = exp(M ln(Nb)). Thus, we see that
formally there is a exponential increase in the number of C parameters with the number of modes,
M . Thus, even assuming we could have finite and close-enough-to-exact one-mode basis sets, it
will be quite impossible to be exact as the number of modes M increases. This extreme increase
in complexity with system size, prevents “ ‘exact” ” quantum dynamics for more that a few degrees
of freedom, even if exact the exact potentials (and couplings) were know. We recall also that
obtaining the potential to high dimensionality involved a detrimental increase in computational
cost with the size of the system. So quantum mechanics for many degrees of freedom is unrealistic.
But then, on the other hand some things can be done, though these issues are issues of current
research. So, while calculations that pretend to be exact (for given potentials) are only possible
with 2-4 atomic molecular systems, there are approximate models that do go further than this,
as well as there are some models for constructing potentials that are less severe the previously
discussed simple direct grid approach. We shall cover only a few aspects here on wave functions
as a taster.

Often we shall consider one particular product function as reference and label the one-mode
functions according to this reference. We use the nomenclature that i, j, k, l denote one-mode
functions occupied in the product function, while a, b, c, d denote one-mode functions not present
in the product function. General one-mode functions (occupied or unoccupied) are denoted by r
and s. This means for example that φi denotes one of the set {φmim(qm),m = 1,M}. The vector i is
correspondingly an index vector (i1, i2, ..., iM) denoting which modals are occupied in the reference
product function.

6.2 The vibrational self consistent field method

In this section we describe the vibrational self consistent field (VSCF) method in a standard first
quantization language. In another section we introduce second quantization and give a second
quantization formulation of VSCF. In other later section we describe more advance wave functions
some of which may use the VSCF state as a reference state.

Consider the vibrational Hamiltonian in the following form

Ĥ = Ĥ1 + Ĥr (6.5)

where Ĥ1 is a sum of operators working on one mode at a time

Ĥ1 =

M∑
m=1

ĥm (6.6)

42

Ĥr contains simply the rest. This partitioning of the Hamiltonian is not very specific. A particu-
larly relevant choice is to take Ĥ1 as a sum of one-dimensional Harmonic oscillators, but there are
other possibilities. We shall neglect Ĥr for a moment and consider a set of modals φmsm(qm) that
are eigen-functions for the one-mode operators in Ĥ1

ĥmφmsm(qm) = εmsmφ
m
sm(qm) (6.7)

We thereby have the eigenvectors of Ĥ1 as product functions

Ĥ1Φs =

M∑
m=1

ĥmΦs = (

M∑
m=1

εmsm)Φs = E1,sΦs (6.8)

Thus if the Hamiltonian contained only one-mode terms the wave function would be obtainable
as a simple product of one-mode functions, and we simply had to solve for these one-mode eigen-
functions.

In the vibrational self consistent field (VSCF) model we seek to find the optimal one-mode
functions when the M -mode wave function is a simple product function. Since the Hamiltonian
in general does not have the simple form of H1 this M -mode wave function will not be exact. We
begin by selecting a reference index vector which we denote by i. We will think of this as the
ground state (or at least we will not take any special action in relation to that it might be an
excited state). We shall variationally optimize the energy

Ei = 〈Φi|Ĥ|Φi〉 (6.9)

under variation of the one-mode functions φmim(qm). The one-mode functions are required to be
normalized

〈φmim(qm)|φmim(qm)〉 = 1 (6.10)

We may write the first-order variation in the energy upon variation of φmim(qm) as

δmEi = 2Re{〈δφmim(qm)

M∏
m′=1, 6=m

φm
′

im′
(qm′)|Ĥ|

M∏
m′′=1

φm
′′

im′′
(qm′′)〉}

= 2Re{〈δφmim(qm)|F̂m,i|φmim(qm)〉} (6.11)

where we have defined the effective operator

F̂m,i = 〈
M∏

m′=1,6=m

φm
′

im′
(qm′)|Ĥ|

M∏
m′′=1,6=m

φm
′′

im′′
(qm′′)〉 (6.12)

Thus, the F̂m,i operator for mode m is obtained by integrating the Hamiltonian over all other
modes. The normalization of the one-mode functions restricts the allowed variations to satisfy

δ{〈φmim(qm)|φmim(qm)〉} = 0 (6.13)

or
Re{〈δφmim(qm)|φmim(qm)〉} = 0 (6.14)

We may combine these constraints with Eq.(6.11) and write the variational criteria as

0 = Re{〈δφmim(qm)|F̂m,i|φmim(qm)〉} − εmimRe{〈δφmim(qm)|φmim(qm)〉} (6.15)

where εmim is a Lagrangian multiplier. We see that εm∗im = εmim and thus εmim is real. We may therefore
write Eq.(6.15) as

0 = Re{〈δφmim(qm)|F̂m,i − εmim |φmim(qm)〉} (6.16)

43

If δφmim(qm) is completely arbitrary (apart from the normalization constraint) then both δφmim(qm)

and iδφmim(qm) are allowed variations. From these two different variations we obtain two equations
which can simply be combined into

0 = 〈δφmim(qm)|F̂m,i − εmim |φmim(qm)〉 (6.17)

Since this equality must hold for arbitrary δφmim(qm) the φmim(qm) one-mode functions must be
eigen-functions of the F̂m,i operator with eigenvalue εmim

F̂m,iφmim(qm) = εmimφ
m
im(qm) (6.18)

The total energy is obtained from Eq.(6.9)

Ei = 〈Φi|H|Φi〉 (6.19)

using the modal that satisfies the VSCF eigenvalue equations. The eigenvalue can be written in
terms of the Hamiltonian and the eigenfunctions as

εmim = 〈φmim(qm)|F̂m,i|φmim(qm)〉 = 〈Φi|Ĥ|Φi〉 = Ei (6.20)

Note that the total energy and the "one-mode" energy for the modes are the same! This may
appear as unusual. It is for example in contrast to the SCF solution for indistinguishable fermions.
In the particular relation above for VSCF above it should be recalled the energy for one-mode
relates to the average of the full Hamiltonian, and in this way contributions from other modes are
also included.

Up to this stage the VSCF treatment is general. The modals may be represented in an analytical
basis or represented in another form and the equations solved numerically. In the following section
we shall discuss further the use of VSCF with one-mode basis sets.

6.3 Basis set expansion for VSCF

We shall now expand each φmsm(qm) function in a set of basis functions χmvm(qm) for each mode.

φmsm(qm) =
∑
vm

Cmvmsmχ
m
vm(qm) (6.21)

We denote the χmvm(qm) basis as the primitive basis. The metric matrix is defined

Smvmum = 〈χmvm(qm)|χmum(qm)〉 (6.22)

We shall here require that the primitive basis is orthonormal

Smvmum = δvmum (6.23)

If the basis set is not orthonormal it is not a problem to include the metric matrix Smvmum in the
formulas.

Expressed in matrix form in the primitive basis set the VSCF modal eigenvalue equations in
Eq.(6.18) becomes

Fm,iCm = Cmεm (6.24)

where Fm,i is the F̂m,i operator in the primitive basis

Fm,iumvm = 〈χmum(qm)|F̂m,i|χmvm(qm)〉 (6.25)

and εm is a diagonal matrix with the Fm,i eigenvalues εmrm as elements.

44

A very relevant example for the set of basis functions is the set of Harmonic oscillator functions
but there are other possibilities. If the potential is separable into a sum of Harmonic oscillators, and
if we for each mode take the set of Harmonic oscillator eigen-functions with frequency corresponding
to the harmonic approximation as basis functions, we have that the solution to the above equations
is the harmonic oscillator solutions, meaning that Cm becomes the unit matrix and εmrm has the
harmonic oscillator energy levels as diagonal elements. Thus the formalism expresses easily the
exact solution in this limiting case.

For an anharmonic potential the M different matrix eigenvalue equations of the type Eq.(6.25)
are coupled. Starting from an initial guess, for example the harmonic oscillator solution discussed
above, the equations may be solved iteratively. That is, based on the given set of modes, the
eigenvalue equations for one mode is solved leading to a new modal wave function for this mode.
Thereafter the eigenvalue equations for the next mode is solved (with the updated first one) and an
updated modal is obtained for this mode as well. This sequence continues through all the modes.
Since all modals are changed the first mode is no longer the solution to the eigenvalue equations
for the new set of modals. The complete sequence may thus be runned again, and the process
continued until further changes are considered below a given threshold (if convergent). We shall
later return to the solution of the VSCF equations in more detail and with more refined algorithms.

We see that an efficient scheme for calculation of the primitive basis set integrals is needed and
(at least parts of or points on) the PES must be determined. It is a major challenge of vibrational
structure theory to handle this issue efficiently and accurately.

6.4 Correlated Vibrational Wave functions : basic aspects

6.4.1 A few comments

The VSCF wave function and energies are real anharmonic wave function. If a harmonic potential
is used VSCF gives the harmonic oscillator solution, but if a true anharmonic potential is used a
different wave function results. Let us divide the anharmonic terms in two parts: i) anharmonic
terms in one mode; ii) mode-couplings term relating to two or more modes at the same time. The
one-mode terms are treated exactly in VSCF - or at least as exact as the one-mode basis allows.
Thus if there are no mode-coupling terms, the separation inherent in VSCF is exact. A numerical
VSCF will be accurate as far as the numerical implementation is exact, the basis is close enough
to being complete etc. The problem is in the mode-coupling part. This is not treated exact. It
is treated partially since it is included in the mean field. However, correlated motion beyond the
mean field is not accounted for. That is: each mode feels the other modes only due to the averaged
field of the coupling terms over these modes.

For those familiar with electronic structure theory, this is quite similar to the situation for
Hartree-Fock, which is also some-times denoted Self-Consistent-Field theory. VSCF and SCF are
as the name indicates conceptually similar theories. The error of electronic SCF can be denoted
the electron correlation problem. The problem in VSCF is similar. We may denote this problem
as the vibrational correlation problem or the mode-mode correlation problem. Below we outline a
few principal different approaches for dealing with mode-mode correlation.

6.4.2 Vibrational Configuration Interaction

The vibrational configuration interaction (VCI) pasteurization of the wave-function is an appli-
cation of the general linear expansion of the wave function in the context of vibrational theory.
The particular VCI methods to be discussed here are various flavors of VCI based upon a VSCF

45

reference state.
Given a particular choice of reference state the linear VCI ansatz can be written

|VCI〉 = Ci |Φi〉+
∑
µ

Cµτµ |Φi〉 (6.26)

in terms of a reference state and a set of orthonormalM -mode states generated by modal excitations
out of that reference state. The Cµ parameters are the variational VCI parameters determined
from VCI eigenvalue equations. The operator τµ generates an excited configuration

τµ |Φi〉 = |µ〉 (6.27)

Thus, µ is a compound index defining which modes are excited and to which modals. Thus for
example µ = (m, a) defines excitation from the referenced modal im of mode m to am.

By including the full set of excitations in the sum over µ, the Full VCI (FVCI) wave function is
obtained. The FVCI wave function is the exact wave function for the given Hamiltonian and one-
mode basis set. The difference between the VSCF energy and the FVCI energy is the correlation
energy in the given one-mode basis set.

Including not all excitation but only up to n-mode excitations we obtain approximated wave
functions with much fewer parameters. A hierarchy of VCI models, VCI[1], VCI[2], VCI[3], VCI[4],
... , is obtained in this way that is guaranteed to converge to the FVCI results for that particular
set of modals. Thus, a set of wave functions is obtained that give increasing accuracy at the prize
of an increasing number of parameters and an accompanying increasing computational cost. If
VCI is carried out to sufficiently high excitation level, and there are no other errors (from the PES
etc), high accuracy can in principle be obtained. This is possible for systems with relative few
degrees of freedom, for example formaldehyde, see fig 6.1.

The parameters and energies for the VCI method is found by solving the VCI eigenvalue
equations

HC = EC (6.28)

where the vector C contains the VCI coefficients and the Hamiltonian matrix H is defined

Hµν = 〈µ|Ĥ|ν〉 (6.29)

The VCI eigenvalue equations are obtained in various standard ways. Either directly from the
time-independent Schrödinger equation by inserting the ansatz and projecting (NB ATKINS ch1.)
or from applying the variational criterium. Thus, the VCI wave functions is variational.

In stead of first doing a VSCF, followed by a VCI, one could in principle also do a Multi-
Configurational (MC) SCF where both the modals and the C coefficients are optimized variation-
ally. This is not widespread in time-independent theory, but actually the foundation of the so
called Multi-configurational Time-dependent Hartree (MCTDH) approach, see later.

6.4.3 Vibrational Møller-Plesset perturbation theory

Defining a zeroth order Hamiltonian Ĥ0 and the corresponding zeroth order wave function from
the VSCF mean-field description

Ĥ = Ĥ0 + Û = F̂ i + Û i (6.30)

F̂ i =
∑
m

F̂m,i (6.31)

perturbation theory can be used to obtain corrections to the VSCF energies and wave functions.
The U i operator describes the difference between the true many-mode interaction and the VSCF

46

Figure 6.1: Comparison of formaldehyde vibrational excitation energies in experiment, the double
harmonic approximation, and VCI[4] using a relative accurate potential) (Seidler and Christiansen,
2007).

mean field representation. Thus, this so-called Vibrational Møller-Plesset theory is the application
of perturbation theory to vibrational problems using a VSCF reference state. The perturbation
separation is unique to each state motivating the i index vector above.

A sequence of perturbational corrections to the VSCF energy for each state is obtained: VSCF,
VMP2, VMP3, VMP4, .. etc. Here, the VSCF energy is in fact the VMP1 total energy. Note
that the VMP theory is different from the more standard vibrational perturbation theory where
the zeroth order problem is the Harmonic oscillator solution.

The VMP expansion is formally written as

Ei =

∞∑
n=0

E
(n)
i (6.32)

|Ψi〉 =

∞∑
n=0

|Ψ(n)i〉 (6.33)

Introducing the perturbation expansion into the time-independent Schrödinger equation and col-
lecting terms according to order, equations for the perturbed wave function and energies can be
obtained.

A problem in VMP theory is that the convergence of the VMP perturbation series can not
be guaranteed and in fact convergence is probably generally unlikely. This is illustrated in fig.6.2.
Thus, while the VMP2 approach may be a cost-efficient strategy in the calculation of low-lying and
well-separated vibrational states, high order VMP is not a vehicle for obtaining arbitrary accuracy
in vibrational structure calculations.

47

Figure 6.2: Contributions in different orders of perturbation theory in VMP for the fundamental
vibrations of ethylene.

We note in passing the VMP is not variational, and for example the VMP ground state energy
is not a lower bound to the exact ground state energy. The arbitrary order VMP implementation
is described in ref.[13]

6.4.4 Vibrational coupled cluster theory

The vibrational CC (VCC) ansatz for the wave function is based on an exponential parameteriza-
tion of the wave function in terms of excitations out of a reference state.

|VCC〉 = exp(T)|Φi〉. (6.34)

Here |Φi〉 is the VSCF wave function (other single Hartree product reference state can in prin-
ciple be used). and T is the cluster operator. The cluster operator contains a sum over allowed
excitations

T =
∑
µ

tµτµ (6.35)

where tµ are the VCC cluster amplitudes while τµ are the previously described excitation operators
indexed by µ. The set of states {|Φi〉 , τµ |Φi〉} spans the complete set of states in the M-mode
space when all possible excitations µ are included. In this way the VCC ansatz can describe any
wave function with a non-vanishing weight of the reference state.

The VCC wave function ansatz is now introduced into the time-independent vibrational Schrödinger
equation, and transformed with exp(−T) to obtain the VCC Schrödinger equation,

exp(−T)Ĥ exp(T)|Φi〉 = EV CC |Φi〉. (6.36)

48

If the cluster amplitudes are determined the VCC energy can be calculated from the following
equation obtained by projection onto the VSCF reference state

EV CC = 〈Φi| exp(−T)Ĥ exp(T)|Φi〉 = 〈Φi|Ĥ exp(T)|Φi〉. (6.37)

Equations for the cluster amplitudes are obtained by projection onto the manifold of excitations
out of the reference state 〈µ| = 〈Φi| τ †µ

0 = eµ = 〈µ| exp(−T)Ĥ exp(T)|Φi〉. (6.38)

These equations determines the parameters also for approximate VCC schemes where only a re-
stricted set of excitations are included in the cluster operator Eq.(6.35) and the same set of exci-
tations are considered in Eq.(6.38).

In the limit of a complete cluster expansion, the “full” VCC becomes identical to the FVCI
solution. Thus, we have only achieved to write the exact solution in a more complicated non-linear
way. The advantage of coupled cluster methods lies in approximate theories where, for a number of
reasons, one can expect that the convergence of the coupled cluster expansions is faster compared
to that of the corresponding configuration interaction. Thus, if we construct a hierarchy of VCC[n]
methods (VCC[1], VCC[2], VCC[3], etc.) analogous to the case for VCI, they will converge faster
to the FVCI limit than the VCI[n] series. Figure 6.3 illustrate this.

Figure 6.3: Comparison of vibrational excitation energies between VCI[n] and VCC[n]. Errors
relative to FVCI in cm−1 for the eight lowest fundamental vibrations of ethylene for different
truncation of the excitation space determined by n. (Seidler and Christiansen).

What one learn from these discussions is, that it is not only important to include correlation,
but it is also crucial how it is done. VCC is much more complicated to implement and the theory
above only scratches the surfaces. There is more to the theory for a rigorous formulation. The

49

above equations are actually quite similar to coupled cluster theory for electronic wave functions.
However, this is largely misleading, since many aspects are different. VCC deals with distinguish-
able modes interacting based on a many-body Hamiltonian which include the molecules PES as
the potential. The electronic correlation problem deals with the interaction of indistinguishable
electrons, and the Hamiltonian is a priori known, involving only one and two body terms, relating
to that all interactions are of Coulomb type.

50

Chapter 7

Many-mode wave-functions in
MidasCpp

Below follows a brief listing of the wave function methods or MidasCpp.

7.1 Vibrational Self-Consistent Field

The original mean-field idea behind vibrational self-consistent field (VSCF) is old by now, and has
in particular been pursued by Bowman et al.[14] and Gerber et al[15] since later 1970s.

The VSCF implementation of MidasCpp is described in Ref.[16] and stand out as based on
second quantization[17], employing an efficient so-called active term algorithm, and demonstrated
linear-scaling in the large molecule limit under reasonable assumptions. The VSCF codes assumes
a sum-of-products (SOP) Hamiltonian, such as automatically constructed by the PES parts of
MidasCpp.

Consider to cite:

1. M. B. Hansen, M. Sparta, P. Seidler, O. Christiansen, D. Toffoli, “A new formula-
tion and implementation of vibrational self-consistent field (VSCF) theory”, J. Chem.
Theo. and Comp. 2010, 6, 235–248

2. O. Christiansen, “A second quantization formulation of multi-mode dynamics”, J.
Chem. Phys. 2004, 120, 2140–2148

7.2 Vibrational Møller-Plesset perturbation theory

Second order vibrational Møller-Plesset perturbation (VMP) was first suggested Gerber and cowork-
ers in the 1990s (under the name correlation corrected VSCF [18, 19]).

The arbitrary order VMP theory and implementation (and Pade approximants) of MidasCpp is
described in Ref.[13]. An alternative to VMP is vibrational auto adjusting perturbation theory[20]
but it has not been used much.

Consider to cite:

1. O. Christiansen, “Møller-Plesset perturbation theory for vibrational wave functions”,
J. Chem. Phys. 2003, 119, 5773–5781

2. E Matito, J. M. Barroso, E. Besalú, O Christiansen, J. M. Luis, “The vibrational
auto-adjusting perturbation theory”, Theor. Chem. Acc. 2009, 123, 41–49

51

7.3 Vibrational Coupled Cluster

7.3.1 Ground-state Vibrational Coupled Cluster

Vibrational Coupled Cluster theory was introduced in Refs.[17, 21]
An efficient VCC[2] algorithm specialized to Hamiltonians with at most two-mode couplings

showed the perspective in applications to large systems[22, 23].
The key reference making the intrinsically complicated VCC equations applicable in an efficient

manner with higher order couplings in the wave functions is the general contraction algorithms of
Ref.[24]. In Ref.[24] it is described how the detailed equations for VCC (and VCI) methods at a
given mode-coupling levels can be automatically derived, analyzed for intermediates, and processed.
This implementation thus covers, VCC[2], VCC[3], VCC[4], etc. The program is in principle open
ended, but VCC[6] and higher is currently of limited practical value and only supported to a limited
extent.

For Hamiltonian operators having at most 2M or 3M couplings a cost-efficient approach inter-
mediate between VCC[2] and VCC[3] in computational cost is VCC[2pt3], see Ref.[25].

Similarly, for operators having at most 2M, 3M, or 4M couplings a cost-efficient approach
intermediate between VCC[3] and VCC[4] in computational cost is VCC[3pt4], see Ref.[26].

The ground state equations are by standard solved by iterative algorithms as described by [27]
normally converging fast.

Consider to cite:

1. O. Christiansen, “Vibrational coupled cluster theory”, J. Chem. Phys. 2004, 120,
2149–2159

2. O. Christiansen, “A second quantization formulation of multi-mode dynamics”, J.
Chem. Phys. 2004, 120, 2140–2148

3. P. Seidler, M. B. Hansen, O. Christiansen, “Towards fast computations of correlated
vibrational wave functions: Vibrational coupled cluster response excitation energies
at the two-mode coupling level”, J. Chem. Phys. 2008, 128, 154113–12

4. P. Seidler, O. Christiansen, “Automatic derivation and evaluation of vibrational cou-
pled cluster theory equations”, J. Chem. Phys. 2009, 131, 234109–15

5. P. Seidler, E. Matito, O. Christiansen, “Vibrational coupled cluster theory with full
two-mode and approximate three-mode couplings: The VCC[2pt3] model”, J. Chem.
Phys. 2009, 131, 034115–12

6. A. Zoccante, P. Seidler, M. B. Hansen, O. Christiansen, “Approximate inclusion
of four-mode couplings in vibrational coupled-cluster theory”, English, Journal of
Chemical Physics 2012, 136, 204118–204118–12

7. N. K. Madsen, I. H. Godtliebsen, O. Christiansen, “Efficient algorithms for solving the
non-linear vibrational coupled-cluster equations using full and decomposed tensors”,
The Journal of Chemical Physics 2017, 146, 134110

7.3.2 VCC response theory

Vibrational response theory[28] is a way to compute also transition properties and vibrational
properties. The description of excited states with VCC is strongly recommended to be done with
VCC response theory as first reported in Ref.[29]

52

The general contraction algorithms of Ref.[24] was extended to general VCC response theory
in Ref.[30] making also higher-coupling VCC response computations possible with low operation
count.

The VCC response theory computation of excited states can proceed in a state by state fashion
as in Refs.[24, 29, 30] using for example standard Davidson or Olsen types of algorithms with some
means for targeting specific states.[31]

An alternative way is to employ damped response theory. Here the (complex) response function
is computed to give the spectrum directly as opposed to first finding the states and then their
absorption. This has been described in [32, 33] using respectively Lanczos and band-Lanczos
algorithms. Alternatively one solves complex linear-response equations to achieve the same goal
as described in Ref.[34]

Consider to cite:

1. P. Seidler, O. Christiansen, “Vibrational excitation energies from vibrational coupled
cluster response theory”, J. Chem. Phys. 2007, 126, 204101

2. P. Seidler, M. Sparta, O. Christiansen, “Vibrational coupled cluster response theory:
A general implementation”, J. Chem. Phys. 2011, 134, 054119–15

3. B. Thomsen, M. B. Hansen, P. Seidler, O. Christiansen, “Vibrational absorption
spectra from vibrational coupled cluster damped linear response functions calculated
using an asymmetric Lanczos algorithm”, English, Journal of Chemical Physics 2012,
136, 124101–124101–17

4. I. H. Godtliebsen, O. Christiansen, “A band Lanczos approach for calculation of vibra-
tional coupled cluster response functions: simultaneous calculation of IR and Raman
anharmonic spectra for the complex of pyridine and a silver cation”, en, Physical
Chemistry Chemical Physics 2013, DOI 10.1039/C3CP50283J

5. I. H. Godtliebsen, O. Christiansen, “Calculating vibrational spectra without deter-
mining excited eigenstates: Solving the complex linear equations of damped response
theory for vibrational configuration interaction and vibrational coupled cluster states”,
en, The Journal of Chemical Physics Oct. 2015, 143, 134108

7.4 Vibrational Configuation Interaction

Vibrational Configuration Interaction methods have been developed in many groups over the years.
The MidasCpp VCI code was developed in the same framework as the VCC code (see above),

thus the key-engine in MidasCpp VCI computations are described in Ref.[24].
Special to MidasCpp is also the possibility to compute VCI spectra and vibrational proper-

ties from vibrational response theory[28] applied to VCI states[35–37]. Vibrational spectra can be
computed directly from the VCI damped response functions as described in Refs.[33, 38] using re-
spectively Lanczos and band-Lanczos algorithms. Alternatively one solves complex linear-response
equations to achieve the same goal as described in Ref.[34].

53

http://dx.doi.org/10.1039/C3CP50283J

Consider to cite:

1. P. Seidler, O. Christiansen, “Automatic derivation and evaluation of vibrational cou-
pled cluster theory equations”, J. Chem. Phys. 2009, 131, 234109–15

2. P. Seidler, M. B. Hansen, W. Györffy, D. Toffoli, O. Christiansen, “Vibrational ab-
sorption spectra calculated from vibrational configuration interaction response theory
using the Lanczos method”, J. Chem. Phys. 2010, 132, 164105–15

3. I. H. Godtliebsen, O. Christiansen, “A band Lanczos approach for calculation of vibra-
tional coupled cluster response functions: simultaneous calculation of IR and Raman
anharmonic spectra for the complex of pyridine and a silver cation”, en, Physical
Chemistry Chemical Physics 2013, DOI 10.1039/C3CP50283J

4. I. H. Godtliebsen, O. Christiansen, “Calculating vibrational spectra without deter-
mining excited eigenstates: Solving the complex linear equations of damped response
theory for vibrational configuration interaction and vibrational coupled cluster states”,
en, The Journal of Chemical Physics Oct. 2015, 143, 134108

5. O. Christiansen, J. Kongsted, M. J. Paterson, J. M. Luis, “Linear Response functions
for a vibrational configuration interaction state”, J. Chem. Phys. 2006, 125, 214309

6. M. B. Hansen, O. Christiansen, C. Hättig, “Automated calculation of anharmonic
vibrational contributions to first hyperpolarizabilities: Quadratic response functions
from vibrational configuration interaction wave functions”, J. Chem. Phys. 2009,
131, 154101

7. M. B. Hansen, O. Christiansen, “Vibrational contributions to cubic response func-
tions from vibrational configuration interaction response theory”, Journal of Chemical
Physics 2011, 135, 154107–154107–14

7.5 Tensor-Decomposition Methods

In the context of VCC and VCI tensor-decomposition approaches has been studied for possible
gains in VCC and VCI computations [27, 39–41].

At this moment CP-VCC is available for ground state VCC computations as described in
Refs.[27, 41]. Extension for VCC response theory is work in progress.

Consider to cite:

1. N. K. Madsen, I. H. Godtliebsen, O. Christiansen, “Efficient algorithms for solving the
non-linear vibrational coupled-cluster equations using full and decomposed tensors”,
The Journal of Chemical Physics 2017, 146, 134110

2. N. K. Madsen, I. H. Godtliebsen, S. A. Losilla, O. Christiansen, “Tensor-decomposed
vibrational coupled-cluster theory: Enabling large-scale, highly accurate vibrational-
structure calculations”, The Journal of Chemical Physics Jan. 2018, 148, 024103

54

http://dx.doi.org/10.1039/C3CP50283J

Chapter 8

Primitive basis sets and integrals

In this chapter we describe different choices of primitive basis sets. By primitive basis we mean
the one-mode basis that are at the root of the computation. Thus, e.g. VSCF one-mode functions
(VSCF modals) are expanded in terms of these primitive one-mode function (primitive modals).
There may in some context be several layers of basis functions, but the primitive basis is the root
basis, and the basis for which the necessary integrals are computed. Thus we expand the one-mode
functions as in VSCF

φmsm(qm) =
∑
vm

Cmvmsmχ
m
vm(qm) (8.1)

All the integrals of the VSCF modals are in turn expressed in terms of the primitive modal integrals.
That is, the integrals of one-mode operators hm,o

t

in the φmrm(qm) basis are simple to obtain from
the integrals in the χmvm(qm) basis as

hm,o
t

rmsm =
∑
umvm

(Cmumsm)∗hm,o
t

umvmC
m
vmsm . (8.2)

Here the primitive one-mode integrals are

hm,o
t

umvm = 〈χmum(qm)|hm,o
t

|χmvm(qm)〉. (8.3)

Note, that even if the modal basis φmrm(qm) often is chosen to be orthonormal, this choice does
not depend on the primitive basis χmvm(qm) is orthonormal. We shall below describe both the option
for which we have the most versatile implementation, the B-spline basis, which is non-orthonormal
local basis, as well as a standard choice of orthonormal basis, the Harmonic oscillator basis. We
recommend the B-spline basis for most practical use as is discussed in a separate subsection.

8.1 B-spline basis functions

8.1.1 B-spline basis function definition

A set of B-spline basis functions can be fully defined in terms of their order k and a knot sequence
t. It is required of the knot sequence that it is that defined on a given interval I = [a, b] in a
strictly non-decreasing order, i.e. a = t0 ≤ t1 ≤ t2 . . . ≤ tm = b.

The full set of B-spline basis functions can thereafter be constructed by means of a recursion
formula [42], as

B1
i (x) =

{
1 if x ∈ [ti, ti+1)
0 elsewhere (8.4)

Bki (x) =
x− ti

ti+k−1 − ti
Bk−1i (x) +

ti+k − x
ti+k − ti+1

Bk−1i+1 (x). (8.5)

55

Each B-spline basis function is a piecewise polynomial function that extends over k + 1 knots,
which are called the support of the B-spline. Each B-spline have non-zero value outside of the
support but is exactly zero at the ends. The means that there will be k B-splines with non-zero
contribution to any point in the interval I and the overlap matrix will therefore have a banded
structure, since Bi(x)Bj(x) = 0 for |i− j| > k.

A certain continuity condition will in this regard arise at each knot, which can be ascribed a
class C(k−µi−1. The multiplicity µi is determined by the number of knots that hold the same value
within the interval of interest. Usually interior knots will have multiplicity of 1, since only one
knot will be placed at the same value in the knot sequence for these. Exterior knots, right at the
end of the interval I will usually have multiplicity of k, which means that the knot sequence is
clamped and the B-splines therefore non-periodic. The first and last B-spline function will thereby
be unbounded and in MidasCpp these will be disregarded and not used in the actual calculation
as the emphasis is on bound states.

8.1.2 Integrals of B-spline basis functions

The integrals of B-spline basis functions are computed by numerical quadrature. The default
choice is a separate Gauss-Legendre quadrature over each subinterval between adjacent knots.
While analytical expressions can be found in some cases the numerical scheme is fully sufficient
and general. The computation is also very efficient and the calculation of one-mode integrals should
never be a bottleneck for any computation.

Standard settings are expected to give very high integral accuracies (order 1013 and often
better).

8.1.3 Why B-spline basis sets are useful

We recommend to use a B-spline basis for most MidasCpp computations.
Why do we consider B-splines as particularly useful basis functions? The reason we consider

B-splines a versatile and useful basis is a combination of different factors. In the PES section it was
alluded to that some potentials (most extreme Taylor expanded potentials) may have bad behavior
outsome some bounds, because it is simply unrealistic to achieve accurate coverage of the full space
in the PES construction. This means there is a risk of performing dangerous extrapolations on
the PES. The B-spline basis allows precise control over the limits of the basis. There is local
support only. The wave function and the corresponding integral evaluation simply does not enter
into other areas than those covered by the basis. This is quite different to for example more global
basis functions like harmonic-oscillator basis functions.

The B-spline basis is not an economical primitive basis in the sense that only very few primitive
basis functions are required to expand the lowest few bound vibrational states. There other basis
sets like a set of Harmonic oscillator basis functions may be much better in some cases. However,
here the perspective is that the VSCF procedure is extremely efficient[16] and it is in most applica-
tions unimportant whether the underlying basis set has 10, 50 or 100 basis functions. Only if the
number of basis functions per mode are of order 1000 and more is the VSCF cost non-negligible
in the bigger picture. This means that it is simple to use a large and well-controlled B-spline
basis set in VSCF computations (and similar). After the VSCF computation a small set of VSCF
modals can be chosen for subsequent computations where the choice of a compact basis is much
more crucial. The set of VSCF modals are then used as basis for subsequent computations such
as VCC. Thus, VSCF is here used to generate a good physical basis for the concrete case at hand
and this VSCF basis spanned on top of an extended B-spline basis is assumed to be superior to

56

any primitive basis that solves some model potential. The basis of VSCF modals are optimal and
can be conveniently truncated to a much smaller number than the primitive B-spline basis.

8.1.4 Defining the B-spline basis in MidasCpp

It is often relevant to define the basis set in terms of a density of the basis functions defined as

ρ =
N

b− a
(8.6)

where N is the number of B-spline functions.
In MidasCpp the B-spline basis set can therefore be conveniently specified by giving the interval

[a, b], the polynomial order, k, and either the number of B-splines or the density of the basis as
given in Eq. (8.6). The interval will in many cases be automatically determined. Typically, it is
defined as the boundary of reliability of the PES. What remains is then the order k and either N or
ρ. The choice of k is not very critical, and a choice of k = 10 has worked fine in many applications,
and is the default choice.

8.1.5 B-spline basis sets literature and citations

For details on B-splines and their properties we refer to other sources such as de Boor’s book [42].
The MidasCpp B-spline vibrational basis function implementation is described in Ref. [43].

Consider to cite:

1. D. Toffoli, M. Sparta, O. Christiansen, “Accurate multimode vibrational calculations
using a B-spline basis: theory, tests and application to dioxirane and diazirinone”,
Mol. Phys. 2011, 109, 673–685

8.2 Harmonic oscillator basis functions

Standard harmonic oscillator basis functions can be used. The computation of the integrals of
harmonic oscillator functions proceeds by recursion relations for integrals of operators containing
polynomials and first and second derivatives which is extremely fast. The negative consequence
of that is that Harmonic oscillator basis cannot at this moment be used with arbitrary fit basis.
Only polynomial PESs can be integrated, and the B-spline basis is thus the general work horse.

8.3 Distributed Gaussians

MidasCpp all allows employing distributed Gaussians as another non-orthogonal local basis. At
this moment it appears that the above two options are the most interesting being either strictly
local the B-spline basis functions are, or close to physical eigenstates in some simple limit, as
Harmonic oscillator functions are.

57

Part III

MidasCpp Input/Output Reference
Manual

58

Chapter 9

General input options

9.1 General keywords

#1 General

Read General input until next level #1 input key.

#2 AnalysisDir
< string >

Set the directory that is to be used for the analysis calculations.

#2 IoLevel
< integer >

Read line with an integer giving the general IoLevel for Midas in the interval 1 − 15. This
number defines the lowest IoLevel setting for all modules, i.e. local module IoLevels will
be set equal to this number if set lower in the input. The IoLevels 1 − 5 contain standard
user-friendly output and is specified below, while the IoLevels 6− 15 contain more developer
oriented output with description found in the developers manual.

1. Short calculation summary: Summarizes the requested results including but not neces-
sarily limited to

– Total number of single point calculations performed in constructing the potential
and harmonic frequencies.

– Vibrational energy, (VSCF, VMP2, VCI, VCC).

– Vibrational frequencies.

– Properties, (Dipole moments, polarizability, hyper-polarizability, moments of iner-
tia etc.).

2. Detailed calculation summary: Additional frequently useful information on requested
results as

– Vibrational states, (modal information).

3. Short calculation flow: Summarizes key calculation steps in the various iterative algo-
rithms available for MidasCpp as

59

– ADGA iterative convergence information.

– VCI and VCC iterative equations convergence information.

4. Detailed calculation flow: Additional frequently required information as produced dur-
ing the various iterative algorithms available for example including.

– Basis set information.

– Grid bounds for basis and potential.

5. Input verification: Helpful comments in the output to ascertain that individual processes
have been carried out, such as

– Write-out statements on processes carried out.

– Local settings.

– Number of single point calculations per ADGA iteration.

9.2 Advanced keywords

#2 BufSize
< integer >

Provides the maximum size of intermediate memory buffers used (for the DataCont class).

#2 Debug

Output lots(!) of debug information. Only for deep debugging.

#2 FileSize
< integer >

Read line with an integer. The integers provides the maximum data size for single files
(for the DataCont class).

#2 NumLinAlg
< string = LAPACK > [LAPACK] [MIDAS_CG] [MIDAS_JACOBI]

Set the type of the numerical linear algebra package internally used. Read in line with a
string. LAPACK sets the use of LAPACK routines in all cases. MIDAS sets the use of a combi-
nation of inherent routines (MIDAS_CG, MIDAS_JACOBI, etc.), and LAPACK routines for cases
where inherent routines are not available.

#2 ReserveModes
< integer >

60

Reads in a line with an integer, which should match the number of modes in the molec-
ular system. This is used to preallocate memory for the modes in order to more efficiently
manage the available memory.

#2 ReserveOper
< integer >

Reads in a line with an integer, which should match the total number of operators for the
molecular system. This is used to preallocate memory for these in order to more efficiently
manage the available memory.

#2 Seed
< integer vector >

A Keyword to provide MidasCpp with a random seed for initializing start guesses etc. rely-
ing on random numbers. Intended to be able to obtain completely reproduce-able results for
algorithms using random numbers.

#2 TechnicalInformation

This keyword indicates that information on the size of doubles, integers and STL containers
are requested, which will then be written in the output.

#2 Time

This keyword indicates to Midas that time information is requested but only information
regarding functions used during the calculation will be written in the output.

61

Chapter 10

Singlepoint input options

10.1 General keywords

#1 SinglePoint

Read SinglePoint input until next level #1 input key.

#2 AssignBasis
< integer string >
[< integer string >]

Assign the basis set to be used for the QM model when run by the DALTON program.
The first line defines the number of types of atoms, followed by a list of pairs consisting of
nuclear charge and the basis set label.
(Only has an effect for SP_DALTON SP calculations)

Example for AssignBasis

#2 ASSIGNBASIS
1 cc-pVDZ // assign cc-pVDZ to hydrogen
8 cc-pVDZ // assign cc-pVDZ to oxygen

#2 BohrUnits

Tells MidasCpp that atomic units are used for structures which are exchanged between MidasCpp and
external electronic structure programs. When using this keyword, please make sure that:
In the Runscript (see #2 RunScript): there should be no conversion of the XYZ coordinates
from Bohr to Angstrom.
In the Createscript (see #2 InputCreatorScript): Bohr units should be used, for instance in
Orca write " ! Bohrs HF-3C ..." , that is, "Bohrs" is added.
(Only has an effect for SP_Generic SP calculations)

#2 DaltonInput
< string >
[< string = #2 End of Dalton Input >]

Begin reading of dalton input. All lines following until #2 End of Dalton Input is passed

62

to the DALTON.INP file for Dalton electronic structure calculations.
(Only has an effect for SP_DALTON SP calculations)

#2 EsSymmetryOff

Electronic structure symmetry is dis-allowed.
(Only has an effect for SP_DALTON SP calculations)

#2 EsSymmetryOn

Electronic structure symmetry is allowed to be set on. (default)
(Only has an effect for SP_DALTON SP calculations)

#2 InputCreatorScript
< string >

Names the script for generating the input for the electronic structure program for generic
singlepoint calculations.
(Only has an effect for SP_Generic SP calculations)

#2 Name
< string >

Reads in name of singlepoint to reference to it later in other input blocks.

#2 PartridgePotential

If defined then use the water potential as parametrized by Partridge and Schwenke (J. Chem.
Phys., 106(1997), 4618). Look in the test_suite directory for input/output examples.
(Only has an effect for SP_MODEL SP calculations)

#2 PropertyInfo
< string = midasifc.propinfo >

Specifies the file, which holds identifiers of the property/properties that are to be calcu-
lated in the single point calculation. Below is an example of a property info file, which
contains specifications for calculating ground state energy and dipole moments, see also the
#3 SetInfo keyword.

Example for PropertyInfo

tens_order=(0),descriptor=(GROUND_STATE_ENERGY)
tens_order=(1),descriptor=(X_DIPOLE),Rot_group=(0),element=(0)
tens_order=(1),descriptor=(Y_DIPOLE),Rot_group=(0),element=(1)
tens_order=(1),descriptor=(Z_DIPOLE),Rot_group=(0),element=(2)

#2 RunScript
< string >

63

Names the script, which runs the electronic structure program in genereic single point calcu-
lations and converts its output to a readable format for MidasCpp in midasifc.prop_general.
(Only has an effect for SP_Generic SP calculations)

#2 Type
< string >

Type of singlepoint, which also defines what other input options are available. Possible
types are:

Options

– SP_DALTON

– SP_GENERIC

– SP_MODEL

– SP_TINKER

#2 ValidationScript
< string >

Names the script, which validates the output of the electronic structure program.
(Only has an effect for SP_Generic SP calculations)

64

Chapter 11

Vib input options

11.1 General keywords

#1 Vib

Read vib input until next level #1 input key.

#2 Basis !VibBasis

For defining the primitive one-mode basis to be used for vibrational structure calculations.
Reads input for this until next #2 input key. See chapter 12 for a list of the basis-set keywords.

#2 Operat !Operator

Read operator input until next #2 input key. See chapter 13 for a list of the operator
keywords.

#2 TdH !TDH

Read input for the TDH module until next #2 key. See chapter 17 for a list of the TDH
keywords.

#2 Vcc !VCC !VCI !VMP

Read input for the correlated vibrational wave function until next #2 key. See chapter
15 for a list of the VCC, VCI, and VMP keywords.

#2 Vscf !VSCF

Read input for VSCF until next level #2 input key. See chapter 14 for a list of the VSCF
keywords.

65

11.2 Advanced keywords

#2 IoLevel
< integer = 0 >

The IoLevel for the vibrational calculations. For general information look at the descrip-
tion of #2 IoLevel.

66

Chapter 12

Basis input options

12.1 General keywords

#3 BSplineBasis !VibBasis
< integer = 10 OR integer vector >

Indicates that a B-spline primitive basis should be used to represent the vibrational wave
function. The number(s) indicate(s) the highest possible order B-spline function that can be
used. It should be noted that the use of a B-spline primitive basis additionally requires spec-
ification of the number of B-spline functions (through #3 NPrimBasisFunctions or #3 Prim-
BasisDensity) and the basis set boundaries (#3 ReadBoundsFromFile or #3 TurningPoint
and #3 ScalBounds or #3 GradScalBounds).
(Recommended: 10.)

#3 GaussianBasis !VibBasis
< real OR real vector >

Indicates that a distributed Gaussian primitive basis should be used to represent the vi-
brational wave function. The number(s) indicate(s) which exponent α should be present in
the Gaussian functions to be used. It should be noted that the use of a distributed Gaus-
sian primitive basis additionally requires specification of the number of Gaussian functions
(through #3 NPrimBasisFunctions or #3 PrimBasisDensity) and the basis set boundaries
(#3 ReadBoundsFromFile or #3 TurningPoint and #3 ScalBounds or #3 GradScalBounds).
(Recommended: 1.00)

#3 GradScalBounds !VibBasis !ADGA
< 2 reals >

The keyword enables the use of gradients at the ADGA grid end points to scale the extent
of the boundaries. The first number is a scaling factor for gradient guided determination
of basis set boundaries and roughly corresponds to a percentwise indication of how much
larger the basis should be, compared to the actual ADGA grid boundaries. The gradients
are obtained individually from the ADGA grid left and right endpoints. If the gradient is
large then the basis set boundary is not expanded much beyond the ADGA grid boundary
but if the gradient is small then the basis set boundary is expanded greatly. The second
number is the maximum extension of the basis set boundaries in Q-units. Compare with

67

#3 ScalBounds.
(Recommended: 1.5 30.0)

#3 HOBasis !VibBasis
< integer OR integer vector >

Indicates that a harmonic oscillator (HO) primitive basis should be used to represent the
vibrational wave function. The number(s) indicate(s) the highest possible quantum number
v that can feature in a HO function, while the individual HO coefficients will be created by
adding together Q2

m operator terms of the potential. It should be noted that a total of v+ 1

basis functions will be generated for each mode and that if a vector of integers is given, then
this should have a size that corresponds to the number of modes in the systems.
(Recommended: 20)

#3 IoLevel !VibBasis
< integer = 0 >

The IoLevel for the basis set parts.
(Will default to #2 IoLevel if that one is set.)

#3 NPrimBasisFunctions !VibBasis
< integer OR integer vector >

Read in a line of either a single integer or a vector of integers. This indicates the num-
ber of distributed Gaussian or B-spline functions that are to be generated and inserted into
the primitive basis for each mode but if only a single integer is given then this number is
extended to all modes.
(Recommended: 200)

#3 NoBasBeyondMaxPot !VibBasis

Makes sure that the basis boundaries cannot be set further out than the coordinates corre-
sponding to the maximum values of potential energy on the left and right side. The potential
is scanned from zero to the basis boundaries, resulting from either the #3 ScalBounds or the
#3 GradScalBounds keywords, in order to determine the maximum potential values, before
a possible reduction is carried out.

#3 PrimBasisDensity !VibBasis
< real OR real vector >

Read in a line of either a single double or a vector of doubles. This indicates the den-
sity with which the number of Gaussian or B-spline functions need to comply, depending on
the actual primitive basis set boundaries. If only a single double is given then this number
is extended to all modes.
(Recommended: 0.80)

#3 ReadBoundsFromFile !VibBasis

68

Tells the program to read grid boundaries (for either knots or gaussian centers) from file.
The optional string specifies the path and name of the file. If no argument is given, it will
default to <analysis>/OneMode_Grid_Bounds, where <analysis> is the #2 AnalysisDir
directory.
(To be used in conjunction with the #3 NPrimBasisFunctions or #3 PrimBasisDensity key-
words.)

#3 ScalBounds !VibBasis !ADGA
< 2 reals >

Enables the extension (or possibly the shortening) of the grid boundaries for either a B-
spline or Gaussian basis beyond what is given, e.g. by an ADGA calculation. The first
number is a scaling factor, while the second number defines the maximum extension of the
basis set. Compare with #3 GradScalBounds.
(The first number (scaling factor) should be in the range [0.9, 2.0]. The second number (max.
extension) should be larger than 5 if used in ADGA calculations and larger than −10.0 in
general. Recommendation for most calculations: 1.5 20.0)

#3 UseScalingFreqs !VibBasis

If scale factors are present in the operator file(s) due to the use of frequency-scaled coor-
dinates, then these can simply be read and used in the vibrational structure calculation. If
this keyword is not enabled, these scaling factors will alternatively be constructed by the
program by reading through the operator file(s) and collecting all harmonic terms.
(This option is recommended if scale factors are present in the operator file(s).)

12.2 Advanced keywords

#3 KeepUnboundedBsplines !VibBasis

Indicates that the first and last B-spline functions of the primitive basis set should not
be disregarded under integral evaluation, even though they may be considered unbounded.

#3 TurningPoint !VibBasis
< integer >

The integer will be used to determine the classical turning points, which in turn are used as
the boundaries for the Gaussian and B-spline basis sets.
(Recommended: 10)

69

Chapter 13

Operator input options

13.1 General keywords

#3 IoLevel !Operator

< integer = 0 >

The IoLevel for the operator parts.
(Will default to #2 IoLevel if that one is set.)

#3 Name !Operator

< string >

The name that will be used to label the operator.

#3 OperFile !Operator

< string >

The string shall give the path and name of the file that contains information on the op-
erator in question. See section 13.3.
(For the Hamiltonian used for the VSCF in an ADGA calculation, this must be set to
"prop_no_1.mop" of the savedir directory.)

#3 ScreenZeroTerm !Operator

< real = 0 >

Read in a line with a double that specifies the threshold for coefficients in the sum-over-
product Hamiltonian. Coefficients lower than this thresholds will be screened but this only
applies for operators read from file. This threshold defaults to the used floating point type
precision, which is usually a double.
(In most cases it’s reasonable to set this to around the machine epsilon.)

#3 SimpleKE !Operator

Simple kinetic energy operator. This will automatically generate a − 1
2
d2

dq2 term for each
coordinate q that has been read in potential information for. Thus, if the operator read in
from #3 OperFile only contains the potential this keyword gives access to easy generation

70

of the simple kinetic energy operator in mass-scaled normal coordinates.
(Enable this if the operator read in from #3 OperFile is a PES in order to turn it into the
Hamiltonian. Don’t enable this if the operator is something else, e.g. a dipole moment.)

13.2 Advanced keywords

#3 SetInfo !Operator

< string=string pairs >

Read in the type of operator and relevant parameters. The input is given as a list of "KEY
= VALUE" entries on the next line. The type is specified using the TYPE identifier. (Ev-
erything is case insensitive.) Current types and related parameters are:
Type Parameters
[X,Y,Z]_DIPOLE no parameters
[XX,XY,XZ,YY,YZ,ZZ]_POL FRQ = External frequency (au)
[XXZ,YYZ,ZZZ,XZX,YZY,ZXX,ZYY]_POL FRQ1 = Ext. frq. 1 (au) FRQ2 = Ext. Frq. 2 (au)

Example for SetInfo

#3 SetInfo
type=xx_pol frq=0.0428

13.3 Operator input from file

The operator file can have any name and the may be given in several formats. The format is given by
the first line in the input. Two examples are "DALTON_FOR_MIDAS" and "GEN_VSCF_95".

In former case each line is assumed to contain the coefficient followed by integers defining the
modes active in this term (everything is separated by spaces). Thus, "1.0 1 1" is a term quadratic
in mode "1" (1.0q21) while "0.5 1 1 2 2" corresponds to 0.5q21q

2
2 . The input is open ended with

respect to the number of integers (thus the number of modes and the power the normal coordinates
are raised to).

In the latter case the first line of the file contains in addition to "GEN_VSCF_95" also
"N_PROD = " followed by an integer giving the number of products in the terms. Thereafter
each line, as in the previous case, defines a term in the operator. In this case we have 2N_PROD
integers followed by the coefficient. The first N_PROD integers denotes the modes, and the next
N_PROD integers gives the power these coordinates are raised to. Thus with "N_PROD = 6"
the line "2 3 6 0 0 0 1 1 2 0 0 0 1.92595e-09" defines the term 1.92595× 10−9q12q

1
3q

2
6 .

71

Chapter 14

VSCF input options

14.1 General keywords

#3 Basis !VSCF
< string >

Read the name of the primitive one-mode basis set used in the VSCF calculation. If only
one basis set is defined, this keyword can be omitted.

#3 CalcDensities !VSCF

Request calculation of the one-mode reduced density matrices. Note that although this
keyword is automatically turning on if an ADGA calculation is requested it works with all
types of VSCF calculations. See also #3 PlotDensities.

#3 MaxIter !VSCF
< integer = 100 >

Set maximum number of iterations for VSCF optimization.

#3 Name !VSCF
< string = ’No name’ >

Assign a name to the VSCF calculation.
(If performing more than one VSCF calculation, one should assign a unique name to each.)

#3 OccAllFirstOver !VSCF

Optimize all first overtones.

#3 OccAllFund !VSCF

Optimize all fundamentals.

72

#3 OccFirstOver !VSCF
< integer vector >

Read in a vector of mode numbers. Optimize the corresponding first overtones.

#3 OccFundamentals !VSCF
< integer vector >

Read in a vector of mode numbers. Optimize the corresponding fundamentals.

#3 OccGenCombi !VSCF
< string vector >
.
.
< string vector >

Read in lines until the next keyword. Each line gives the modes and excitation levels of
a state to be optimized using the notation: <mode>ˆ<exci-level>.

Example for OccGenCombi

In order to optimize the (0,1,2) and (1,0,3) states of water, write:
#3 OccGenCombi
1^1 2^2
0^1 2^3

#3 OccGroundState !VSCF

Optimize the vibrational ground state.
(If nothing else is defined, the ground state will be optimized as default. Therefore, this
keyword is only strictly necessary if the ground state is requested together with e.g. funda-
mentals or overtones. Note that this keyword will append _0 to the name of the VSCF data
files. If the ground state is optimized without this keyword _0.0 will be appended.)

#3 Oper !VSCF
< string >

Read the name of the Hamiltonian operator used in the VSCF calculation. If only one
operator is defined, this keyword can be omitted.

#3 PlotDensities !VSCF
< integer = 0 >

Read in a line with a single integer, which indicates how many modals for each vibrational
mode that is to be plotted. The 1M wave function and density are plotted and files are
dumped to the #2 AnalysisDir directory. Note that the #3 CalcDensities keyword needs to

73

be specified additionally for this keyword to have any effect and that the fitted potential files
will need to be situated in the #2 AnalysisDir directory if harmonic oscillator or Gaussian
functions are used as primitive basis for the wave function.

#3 Restart !VSCF

Restart the calculation.

#3 Threshold !VSCF
< real = 100εmachine >

Read convergence threshold for VSCF optimization. The convergence criterion is energy
difference between iterations.

14.2 Advanced keywords

#3 IoLevel !VSCF
< integer = 0 >

Set output level for VSCF.
(Will default to #2 IoLevel if that one is set.)

#3 Occup !VSCF
< integer vector >

Directly specify an arbitrary state to be optimized in the VSCF calculation. The num-
ber of integers must equal the number of modes of the system.
(Can be cumbersome for large system; consider using the keywords #3 OccGroundState,
#3 OccFundamentals, #3 OccFirstOver, #3 OccAllFund and #3 OccAllFirstOver for cases
that fit with those descriptions.)

Example for Occup

#3 Occup // Optimizes the (1,0,0,2,0,0) state
1 0 0 2 0 0 // of e.g. formaldehyde (6 modes).

74

Chapter 15

VCC input options

MidasCpp is able to perform the different types of correlated vibrational-structure calculations in
many different ways using very specialized options which can make the input section very verbose.
Thus, for standard calculations we strongly recommend using the #3 Method keyword which
automatically sets up all the necessary defaults for performing VCC (with and without tensor
decomposition), VCI, and VMP calculations.

15.1 General keywords

#3 AllFirstOvertones !VCI

Optimize all first overtones with VCI.

#3 AllFundamentals !VCI

Optimize all fundamentals with VCI.

#3 Basis !VibBasis
< string >

Read the name of the primitive one-mode basis set used in the calculation. If only one
basis set is defined, this keyword can be omitted.

#3 CROP !VCC
< integer = 3 >

Use CROP algorithm. Set number of subspace vectors.
(3 vectors is usually enough. Increase if convergence problems occur.)

#3 DIIS !VCC
< integer = 3 >

Use DIIS algorithm for solving VCC equations. NB: Only the implementation in the tensor-
based solver works properly!
(Use CROP instead)

75

#3 EnergyDiffMax !VCI
< real = 5 cm−1 >

Set maximum energy difference for ENERGY and OVERLAPANDENERGY targeting meth-
ods

#3 FirstOvertones !VCI
< integer vector >

Optimize selected first overtones with VCI.

#3 Fundamentals !VCI
< integer vector >

Optimize selected fundamentals with VCI.

#3 IOLevel
< integer = 0 >

Set IO level for correlated calculations.

#3 ItEqBreakDim !VCI
< integer = 100000 >

Set break dimension of iterative subspace for solving eigenvalue equations.

#3 ItEqEnerThr !VCC !VCI
< real >

Set energy-change threshold for solving VCC and VCI equations.

#3 ItEqMaxDim !VCI
< integer = 100 >

Set maximum dimension of iterative subspace for solving linear and eigenvalue equations.

#3 ItEqMaxIt !VCC !VCI
< integer = 40 >

Set maximum iterations of iterative equation solver for correlated calculations.

#3 ItEqResidThr !VCC !VCI
< real = 1.e-6 >

76

Set residual threshold for solving VCC and VCI equations.

#3 LimitModalBasis
< integer vector = {6} >

Set the number of VSCF modals for each mode to use in the correlated calculation. If
all modals are requested, the #3 UseAllVscfModals keyword can be set
(Using 6-10 modals per mode usually gives converged results.)

#3 Method
< string > [VCC[n]] [CP-VCC[n]] [VCI[n]] [VMPn[m]]
[< string vector = NVCISTATES 1 (for VCI only) >] [NVCISTATES <nstates>]

Set the vibrational-structure method to use. For VCI it is also possible to set the num-
ber of states to calculate by direct diagonalization of the Hamiltonian. For (CP-)VCC the
order (n) can be any natural number, 2pt3 or 3pt4 for perturbative methods, or 2H2 for the
fast VCC[2] method with 2-mode-coupled Hamiltonians. For VCI all natural numbers are
allowed, but for orders higher than 6 the general-excitation-level algorithm (which may be
less optimal) is used. For VMP it is possible to set the order of the energy correction n (due
to the 2n+ 1 rule, higher-order energies may be calculated as well) and the maximum exci-
tation level to include in the calculation m. Note that the [m] is optional and can be omitted.

Example for Method

In order to perform a VCC[2pt3] calculation, write:
#3 Method
VCC[2pt3]

A VCI[3] calculation of the 5 lowest states is performed by writing:
#3 Method
VCI[3]
NVCISTATES 5

The VMP3 energy (and VMP1 wave function) is obtained by:
#3 Method
VMP3

#3 Name
< string = ’No name’ >

Assign a name to the calculation.
(If performing more than one calculation, assign a unique name to each.)

#3 NewtonRaphson !VCC

Use Newton-Raphson algorithm for solving VCC equations. The following options are only
for the tensor-based equation solver.
(Use this if serious convergence problems occur.)

77

#4 AdaptiveMaxExci !VCC
< real = -1 (disabled) >

Increase the excitation level of the Jacobian if the error changes less than this threshold
times the current largest error decrease.

#4 AdaptiveThresholdScaling !VCC
< real = 0.02 >

Set convergence threshold for linear equations to this value times the norm of the RHS.

#4 JacobianMaxExci !VCC
< integer = -1 (disabled) >

Set maximum excitation order for Jacobian transformation. Use zeroth-order Jacobian for
the rest.
(Makes the calculations cheaper, but CROP is more efficient at an even cheaper cost.)

#4 MaxIter !VCC
< integer = 100 >

Maximum iterations in the linear-equation solver.

#4 NoAdaptiveLinSolverThreshold !VCC

Disable adaptive thresholds for linear equations.

#4 NoLinSolverPrecon !VCC

Disable diagonal preconditioner for solving linear equations.
(May be useful if the 0th-order Jacobian is a very bad approximation to the true inverse
Jacobian matrix.)

#4 StepsizeControl !VCC
< real = -1 (disabled) >

Set maximum step size for Newton-Raphson algorithm.

#3 Oper !Operator

< string >

Read the name of the Hamiltonian operator used in the calculation. If only one opera-
tor is defined, this keyword can be omitted.

78

#3 OverlapMin !VCI
< real = 0 >

Set minimum squared overlap between target and solution vector for OVERLAP target-
ing method
(0.1 is the recommended setting)

#3 OverlapSumMin !VCI
< real = 0 >

Set minimum overlap sum for OVERLAPSUM targeting method
(0.8 is the recommended setting)

#3 Reference !VCI

Optimize the VCI reference state.

#3 Restart
[< integer >]

Attempt to restart the calculation. Optionally, read excitation level of the calculation to
restart from (if restarting from lower-order calculation with same name).

#3 Rsp !VCC !VCI !RSP

Pass control to the response input driver to perform VCC and VCI response calculations
(see chapter 16).

#3 SimpleQuasiNewton !VCC

Use simple quasi-Newton method for solving the VCC equations. This is default in the
old solver.
(The default for the tensor-based solver (CROP) is always better.)

#3 TargetingMethod !VCI
< string = BESTHITS > [BESTHITS] [OVERLAP] [ENERGY] [OVERLAPANDENERGY] [OVERLAPSUM]

Set algorithm for targeting specific VCI states.
(OVERLAPSUM is often a good method)

#3 UseAllVscf

Perform separate correlated calculations on top of each defined VSCF calculation. If the
#3 Oper or #3 Basis keywords have been set, only the VSCF calculations using the same
operator and basis will be used.

79

#3 UseVscf
< string >

Set the name of the VSCF calculation to use as reference. If multiple calculations are defined
in the same VSCF input block, a separate correlated calculation will be run for each. Also
note that it is not necessary to define a separate VSCF input if a default calculation on the
vibrational ground state is requested. In that case this keyword can be omitted.

15.2 Advanced keywords

#3 AdaptiveDecompGuess !VCC !TENSOR

Use the amplitudes from the previous iteration as starting guess for recompression in CP-
VCC. This does not work together with CROP!
(Do not use this feature.)

#3 AdaptiveDecompThreshold !VCC !TENSOR
< real = -1 (disabled) >

Read Ct. Recompress the CP-VCC amplitudes in iteration n to T (n)
CP,t = Ct||∆t(n)||.

(The recommended value (0.005) is automatically set when using #3 Method to set up a
CP-VCC calculation.)

#3 AdaptiveTensorProductScreening !VCC !TENSOR
< real >

Adapt the screening threshold in CP-VCC to the decomposition threshold of the individ-
ual MCs in the error vector.
(Not automatically set because it is relatively untested, but 0.01 seems to work fine.)

#3 AdaptiveTrfDecompThreshold !VCC !TENSOR
< real = -1 (disabled) >

Read Ce. Recompress the CP-VCC error vectors in iteration n to T
(n)
CP,e = CeT

(n)
CP,t (see

#3 AdaptiveDecompThreshold).
(It is more efficient to use individual thresholds for all MCs which is automatically set when
using #3 Method to set up a CP-VCC calculation.)

#3 AllowBackstep !VCC

Allow the use of backtracking line search. This is default for all other methods than CROP
and DIIS.

#3 BacktrackingThresh !VCC
< real = 0 (only backtrack if error increases) >

80

Use backtracking line search if error decreases (relatively) less than this value. Note that this
is disabled for CROP and DIIS as default.

#3 CPVCCDefaults !VCC !TENSOR

Set defaults for CP-VCC method.
(Use the #3 Method keyword instead.)

#3 CheckIDJA !VCC

Print extra information about the IDJA Jacobian. This might affect computational time
slightly.

#3 CheckLaplace !VCC !TENSOR

Check accuray of Laplace-decomposed modal-energy denominators for CP-VCC.

#3 CheckNewtonRaphson !VCC

Print extra information about the Newton-Raphson update. This might affect computa-
tional time slightly.

#3 DiagMeth
< string = LAPACK >

Set method for diagonalization of matrices.

#3 DisableCheckMethod !VCI !VCC

Allow the V3 transformer to use VCC and VCI methods that have not been tested and
verified.

#3 DoNotSave !VSCF

Do not save modals to disk.

#3 EigValSeq !VCI
< integer >

Solve for this number of roots at a time when solving eigenvalue equations.

#3 EnerThrForOthers !VCI
< real = 1000 >

81

When using targeting, set energy threshold for states beyond the best hits to this value
times the threshold. I.e. as default the extra states are not converged as tight as the best
hits.

#3 FullRankAnalysis !VCC !TENSOR

Output detailed info on ranks of different tensors for CP-VCC.

#3 H2Start !VCI !VCC

Start solving equations from VCIH2 start guess. NB: Does not work for tensor-based VCC
solver!

#3 IDJA !VCC
< real = -1 (disabled) >

Enable Improved Diagonal-Jacobian Approximation (IDJA) and set threshold for updating
the inverse-Jacobian approximation (only update if the norm of the residual change is larger
than this threshold).
(Use of IDJA is not recommended. Use CROP instead.)

#3 IDJAUnitMatrixGuess !VCC

Start IDJA from a unit matrix instead of the 0th-order inverse Jacobian.
(Not recommended.)

#3 ISO
< integer = 0 >

Set the interaction-space order.

#3 ImprovedPreconInSubspaceMatrix !VCC

Use improved preconditioner in constructing the CROP/DIIS subspace matrix (only for the
tensor-based solver).
(Only relevant when using improved preconditioning with CROP or DIIS which is not rec-
ommended!)

#3 ImprovedPrecond !VCI
< integer >

Use lower-order Jacobian as preconditioner instead of the zeroth-order approximation.
(Rarely worth the effort)

#3 IndividualMCDecompThresh !VCC !TENSOR
< real vector = 1.0 0.0 >

82

Use individual decomposition thresholds for the different MCs in the error vector for CP-
VCC. Read absolute and relative scaling coefficients.
(This is the recommended approach which is set when using #3 Method. Use the default
settings.)

#3 IntermediateRestrictions !VCC !VCI

Set restrictions for storing intermediates in the V3 transformer.
(The default is usually fine)

#4 MaxForward !VCC !VCI
< integer = 0 >

Set maximum number of forward contractions on saved intermediate.

#4 MinDown !VCC !VCI
< integer = 1 >

Set minimum number of down contractions on saved intermediate.

#4 MinForward !VCC !VCI
< integer = 0 >

Set minimum number of forward contractions on saved intermediate.

#3 ItEqMaxItMicro !VCC !VCI
< integer = 10 >

Set maximum number of micro iterations of iterative equation solver for correlated calcu-
lations (only use-able with #3 UseOldVccSolver).

#3 ItEqMicroThrFac !VCC !VCI
< real = 2.e-2 >

Converge equations of micro iterations to this threshold times the current residual norm
(only use-able with #3 UseOldVccSolver).

#3 LambdaScan
< integerrealreal >

Read number of lamdas, min and max lambda. Solve equations for H = H0 + λU for
all lambdas given.

83

#3 Lambdas
< real vector >

Solve equations for H = H0 + λU for all lambdas given.

#3 LaplaceInfo !VCC !TENSOR

Pass control to the Laplace input driver for Laplace-decomposed energy denominators. See
chapter 27.

#3 Level2Solver !VCI !VCC
< string >

Set the library for solving linear and eigenvalue equations for improved preconditioning in
VCI and Newton-Raphson (only use-able with #3 UseOldVccSolver) in VCC.

#3 MaxBacksteps !VCC
< integer = 10 >

Set maximum number of times the solver is allowed to reduce the step size before quit-
ting.

#3 MaxBacktracks !VCC
< integer = 1 >

Set maximum number of step-size reductions in a given backtracking iteration.

#3 MaxExPrMode
< integer vector >

Maximum excitation level for each mode for the correlated wave-function calculation.

#3 MaxExci
< integer >

Maximum excitation level for the correlated wave-function calculation.
(Use the #3 Method keyword instead.)

#3 MaxNormConvCheck !VCC

In the tensor-based non-linear solver, converge the VCC equations based on the maximum
error of a given MC instead of the norm of the full error vector.
(Use this for large systems and for non-interacting subsystems)

84

#3 NModes
< integer >

Set the number of modes in the calculation.
(This is rarely necessary.)

#3 NResVecs !VCI
< integer >

Read number of restart vectors.

#3 NoBackstep !VCC

Disable the use of backtracking line search. This is default for CROP and DIIS.

#3 NoOlsen !VCI

Disable the Olsen method and use Davidson instead for solving eigenvalue equations.

#3 NoPrecon !VCC

Disable preconditioner (inverse-Jacobian approximation) for VCC (only the tensor-based
solver).
(Not recommended unless the 0th-order Jacobian is very bad.)

#3 OccAllFirstOver !VSCF

Optimize all first overtones.
(Define the reference state in a separate VSCF input block and use the #3 UseVscf and
#3 UseAllVscf keywords.)

#3 OccAllFund !VSCF

Optimize all fundamentals.
(Define the reference state in a separate VSCF input block and use the #3 UseVscf and
#3 UseAllVscf keywords.)

#3 OccFirstOver !VSCF
< integer vector >

Read in a vector of mode numbers. Optimize the corresponding first overtones.
(Define the reference state in a separate VSCF input block and use the #3 UseVscf and
#3 UseAllVscf keywords.)

#3 OccFundamentals !VSCF
< integer vector >

85

Read in a vector of mode numbers. Optimize the corresponding fundamentals.
(Define the reference state in a separate VSCF input block and use the #3 UseVscf and
#3 UseAllVscf keywords.)

#3 OccGenCombi !VSCF
< string vector >
.
.
< string vector >

Read in lines until the next keyword. Each line gives the modes and excitation levels of
a state to be optimized using the notation: <mode>ˆ<exci-level>.
(Define the reference state in a separate VSCF input block and use the #3 UseVscf and
#3 UseAllVscf keywords.)

#3 OccGroundState !VSCF

Optimize the vibrational ground state.
(Define the reference state in a separate VSCF input block and use the #3 UseVscf and
#3 UseAllVscf keywords.)

#3 Occup !VSCF
< integer vector >

Set occupation vector for the reference state.
(Define the reference state in a separate VSCF input block and use the #3 UseVscf and
#3 UseAllVscf keywords.)

#3 Pade !VMP

Use Pade resummation techniques in resumming the VMP perturbation series.

#3 PreDiag !VCI
< integer >

Use prediagonalization to solve VCI equations. Input dimension of prediagonalization matrix.

#3 PreconSavedResiduals !VCC !TENSOR

Save preconditioned residuals in CROP/DIIS subspace for CP-VCC.
(Not recommended. Use the default instead.)

#3 ResidThrForOthers !VCI
< real = 1000 >

When using targeting, set residual threshold for states beyond the best hits to this value

86

times the threshold. I.e. as default the extra states are not converged as tight as the best
hits.

#3 SaveRankInfo !VCC !TENSOR

Save and output statistics on ranks of tensors during CP-VCC optimization.

#3 ScreenIntermedAmps !VCI !VCC
< real = 0 >

Screen terms in the V3 transformer based on amplitudes.

#3 ScreenIntermeds !VCI !VCC
< real = 0 >

Screen terms in the V3 transformer.

#3 SizeIt

Output size of various quantities.
(Only for testing.)

#3 TargetSpace !VCI

Target the states delared in the analysis/RspTargetVectors file.
(Only use this for targeting advanced states, not fundamentals and first overtones.)

#3 TensorDecompInfo !VCC !TENSOR

Read tensor-decomposition settings for recompressing the CP-VCC amplitudes. Passes con-
trol to tensor-decomposition input reader (see chapter 26).
(Not required when setting CP-VCC via #3 Method)

#3 TensorProductLowRankLimit !VCC !TENSOR
< integer = 20 >

In CP-VCC, convert direct product of lower rank than this directly to CP format instead of
using recompression.

#3 TensorProductScreening !VCC !TENSOR
< real vector >

Read screening threshold for direct products (and CP tensors) during calculation of the
CP-VCC error vector.
(The recommended value (relative to the convergence threshold) is automatically set when
using #3 Method to set up a CP-VCC calculation.)

87

#3 TimeIt

Time various things such as iterations, etc.

#3 Transformer !VCI !VCC
< string vector >

Set up a transformer for VCI and VCC calculations. The many options are explained in
table 15.1 on page 90.
(Use the #3 Method keyword instead unless you want something non-standard!)

#3 TransformerAllowedRank !VCC !TENSOR
< integer >

Read maximum allowed rank for the VCC error vector during transformation.
(The recommended value (1000) is automatically set when using #3 Method to set up a
CP-VCC calculation.)

#3 TransformerTensorDecompInfo !VCC !TENSOR

Read tensor-decomposition settings for recompressing the CP-VCC error vectors. Passes
control to tensor-decomposition input reader (see chapter 26).
(Not required when setting CP-VCC via #3 Method)

#3 TrueHDiag !VCI !VCC

Use true VCI Jacobian diagonal as preconditioner instead of the zeroth-order approxima-
tion.
(Rarely worth the effort)

#3 UseAllVscfModals

Use all VSCF modals for correlated calculation as opposed to using the default in #3 Lim-
itModalBasis
(Rarely necessary)

#3 UseOldVccSolver !VCC

Use the old non-linear-equation solver for solving the VCC equations.
(Only set this keyword if you want to use an option that is not implemented in the tensor-
based equation solver.)

#3 VAPT
< integer >

Use VAPT (vibrational auto-adjusting perturbation theory) as correlated wave-function method
and read the maximum wave-function order.

88

#3 VCC !VCC

Use VCC as correlated wave-function method. The order is specified with the #3 Max-
Exci and #3 Transformer keywords.
(Use the #3 Method keyword instead unless you want to do something non-standard.)

#3 VCI !VCI
< integer >

Use VCI as correlated wave-function method and read the requested number of states. The
order is specified with the #3 MaxExci and #3 Transformer keywords. If VCI-related tar-
geting keywords (e.g. #3 Reference, #3 AllFundamentals, etc.) are set, the number of states
will be overwritten.
(Use the #3 Method keyword instead unless you want to do something non-standard.)

#3 VMP !VMP
< integer >

Use VMP as correlated wave-function method and read the wave-function order (energy
will have order 2n + 1). The maximum excitation level is specified with the #3 MaxExci
keyword.
(Use the #3 Method keyword instead unless you want to do something non-standard.)

#3 VMPStart !VCI !VCC

Start solving equations from VMP start guess. (Only use-able with #3 UseOldVccSolver.)

#3 VscfMaxIter !VSCF
< integer = 100 >

Set maximum number of iterations for reference VSCF calculation. NB: This cannot be
used together with #3 UseVscf or #3 UseAllVscf
(Do not set VSCF input in VCC block. Use #3 UseVscf or #3 UseAllVscf instead!)

#3 VscfScreenZero !VSCF
< real = 0 >

Set screening threshold for reference VSCF calculation. NB: This cannot be used together
with #3 UseVscf or #3 UseAllVscf.
(Do not set VSCF input in VCC block. Use #3 UseVscf or #3 UseAllVscf instead!)

#3 VscfThreshold !VSCF
< real = 100ε >

Set energy-change threshold for reference VSCF calculation. NB: This cannot be used to-
gether with #3 UseVscf or #3 UseAllVscf
(Do not set VSCF input in VCC block. Use #3 UseVscf or #3 UseAllVscf instead!)

89

15.3 Tables

Table 15.1: Possible setting associated with the #3 Transformer keyword.
trf=orig Default. Selects the original, general excitation

level transformer. Appropriate for VCC, VCI,
and VMP

t1transh=[true|false] Only relevant for VCC. Use T1-transformed one-
mode integrals. Default: true

outofspace=[true|false] Only relevant for VCC. Use large intermediate
spaces. Possible for historical reasons. Default:
false

rsu=[true|false] Remove Selected Unlinked. Only relevant for
VCC. Certain unlinked terms are removed in the
evaluation of the VCC error vector. Currently
inconclusive if this is a good strategy.Default:
false

trf=2m Use fast two-mode only transformer. Requires
two-mode excitation space (set using #3 Max-
Exci) and two-mode Hamiltonian. Appropriate
for VCC, VCI, and VMP

screening=x x is a floating point number specifying a screen-
ing threshold for expensive contributions in the
transformer. Negative x turns screening of. De-
fault: x=0.0

trf=v3 Only available for VCC and VCI[gs]. Use faster
V3 transformer.

type=string Sets the specific type of calculation. Current
possibilities are gen (general), vcc1pt2, vcc2pt3,
vcc3pt4, and vcc3pt4F. Default: gen

fileprefix=string Set prefix for files containing V3 contributions
used by transformer. If files do not exist they
will be generated. Default: INSTALL_DATADIR as
specified during configuration.

t1transh=[true|false] Only relevant for VCC. Use T1-transformed one-
mode integrals. Default: true

latex=[true|false] Write LATEX file with V3 contributions. So far
only works for general VCC. Default: false

90

Chapter 16

Response input options

16.1 General keywords

#4 AllFirstOvertones !RSP

Target all first overtones.

#4 AllFundamentals !RSP

Target all fundamental excitations.

#4 BandLanczosIr !RSP
< string vector >

Used in conjunction with #4 LanczosRsp to create infra-red spectra from the damped linear
response functions. Needs x-, y-, and z-dipoles.

Example for BandLanczosIr

#4 LanczosRsp
chainlen=215
frq_range=(0:4000:5)
rsp=(order=2, opers=(x,y,z), gamma=10, name=water)

#4 BandLanczosIr
name=birspec blrsp=water analyze=minima

#4 BandLanczosRaman !RSP
< string vector >

Used in conjunction with #4 LanczosRsp to create Raman spectra calculated from the
damped linear response functions. Needs xx-, yy-, zz-, xy-, xz-, and yz-polarizabilities

for a given frequency.

91

Example for BandLanczosRaman

#4 LanczosRsp
chainlen=215
frq_range=(0:4000:5)
rsp=(order=2, opers=(xx,yy,zz,xy,xz,yz), gamma=10, name=water)

#4 BandLanczosRaman
name=bramspec blrsp=water freq=0.0428 analyze=minima

#4 EigenVal !VCC !VCI !VSCF !RSP
< integer >

Read how many excitation energies to calculate. If no targeting is used, the lowest-energy
states are calculated.

#4 FirstOvertones !RSP
< integer vector >

Target selected first overtones.

#4 Fundamentals !RSP
< integer vector >

Target selected fundamentals.

#4 ItEqBreakDim !RSP
< integer = 100000 >

Set break dimension of iterative subspace for solving eigenvalue equations.

#4 ItEqEnerThr !RSP
< real >

Set energy-change threshold for solving VCC and VCI response equations.

#4 ItEqMaxDim !RSP
< integer = 100 >

Set maximum dimension of iterative subspace for solving linear and eigenvalue equations.

#4 ItEqMaxIt !RSP
< integer = 20 >

Set maximum iterations of iterative equation solver for solving linear and eigenvalue equaitons.

92

#4 ItEqResidThr !RSP
< real = 1.e-6 >

Set residual threshold for solving VCC and VCI response equations.

#4 LanczosRsp !RSP
< string vector >
.
.
[< string vector >]

Used to define response functions to be calculated by the Lanczos chain method. To specify a
response function use rsp=(<order>, <options>). Order 2 defines linear response functions,
and order 3 defines quadratic response, etc. Presently only linear and quadratic response is
available.

Example for LanczosRsp

#4 LanczosRsp
chainlen=215
frq_range=(0:4000:5)
rsp=(order=2, opers=(x,y,z), gamma=10, name=water)

#4 RspFunc !RSP
< string vector >
.
.
[< string vector >]

Read response functions to calculate. Each line begins with an integer specifying the or-
der of the response (1 is expectation value, 2 is linear response, 3 is quadratic response, etc.)
followed by the name(s) of the operator(s) and optionally a set of frequencies. Transition
moments are calculated with -1 for ground state to excited state and -11 for excited-excited
transitions (only available for VCI). The excited states to calculate ground-to-excited transi-
tion moments for are chosen by specifying ’ForStates <state numbers>’. For excited-excited
transitions one specifies ’ForLeftStates <state numbers> ForRightStates <state numbers>’.
To calculate response in an open frequency interval use ’ForFrq <begin> <end> <steps>’,
where ’<begin>’ and ’<end>’ are in atomic units. A damping factor in atomic units can
be supplied by specifying ’ForGamma <gamma>’. Using ’InverseCM’ allows to supply fre-
quencies in inverse centimeters instead of in atomic units.

93

Example for RspFunc

#4 RspFunc
// Calculate expectation value for operator named ’oper’
1 oper
// Calculate linear response function for operators ’x’ and ’y’
// at zero frequency
2 x y 0.0
// Calculate ground-to-excited transition moments for operator ’x’
// for excited states 0-5
-1 x ForStates [0..5]
// Calculate excited-excited transition moments for operator ’x’
// for excited states 0 and 2
-11 x ForLeftStates 0 2 ForRightStates 0 2
// Calculate damped linear response for operator ’x’
// in a specific frequency interval
2 x x ForFrq 3000 3200 50 ForGamma 10 InverseCM

#4 TargetingMethod !RSP
< string = BESTHITS > [BESTHITS] [OVERLAP] [ENERGY] [OVERLAPANDENERGY] [OVERLAPSUM]

Set algorithm for targeting specific states. If the tensor-based solver is used for calculat-
ing response eigenvalues, OVERLAPSUM is the only option.
(OVERLAPSUM is often a good method)

16.2 Advanced keywords

#4 EnergyDiffMax !RSP
< real = 5 cm−1 >

Set maximum energy difference for ENERGY and OVERLAPANDENERGY targeting meth-
ods

#4 OverlapMin !RSP
< real = 0 >

Set minimum squared overlap between target and solution vector for OVERLAP target-
ing method
(0.1 is the recommended setting)

#4 OverlapSumMin !RSP
< real = 0 >

Set minimum overlap sum for OVERLAPSUM targeting method
(0.8 is the recommended setting)

94

Chapter 17

TDH input options

17.1 General keywords

#3 Basis !TDH
< string >

Name of the primitive one-mode basis.
(This must be the same basis as the one used in VSCF for generating the initial wave
packet.)

#3 ExpectationValues !TDH
< string vector >
.
.
< string vector >

Read in names of operators to calculate expectation values for. There can be multiple
operators per line and properties are read until the next keyword.

#3 ExponentialTdH !TDH

Use the X-TDH parameterization of the wave function.

#3 ImagTime !TDH

Do imaginary-time propagation in order to obtain the ground-state energy and wave function.

#3 InitialWF !TDH
< string vector > [VSCF <vscf-name>]

Policy for initializing the TDH wave function. For now, the only option is initializing from
the result of a VSCF calculation.

#3 Integrator !TDH

95

Pass control to the ODE input reader (see section 25). Note that this keyword is mandatory!

#3 IoLevel !TDH
< integer = 1 >

Set IO level for TDH calculation.

#3 LinearTdH !TDH

Use the L-TDH parameterization of the wave function.

#3 Name !TDH
< string = TDH_0 >

Assign a name to the TDH calculation.
(Assign a unique name to each calculation if there are multiple TDH input blocks in the
input file.)

#3 Oper !TDH
< string >

Name of the operator the TDH wave-packet propagation is performed on.

#3 Properties !TDH
< string vector > [energy] [phase] [autocorr] [halftimeautocorr] [kappanorm]
.
.
< string vector > [energy] [phase] [autocorr] [halftimeautocorr] [kappanorm]

Read in the properties that should be calculated and saved to disk. There can be multi-
ple properties per line and properties are read until the next keyword. Options are: energy,
phase (F (t) in e−iF (t)), auto-correlation function (S(t)), auto-correlation function calculated
using the half-time wave function, and norms of the kappa vectors (only for X-TDH).

#3 Spectra !TDH
< string vector > [autocorr] [halftimeautocorr]
.
.
< string vector > [autocorr] [halftimeautocorr]

Read in names of correlation functions to calculate spectra for. Note that the correlation
functions must also be set under #3 Properties.

96

#3 TwoModeDensities !TDH
< string vector >
.
.
< string vector >

Read in pairs of modes (i.e. mode labels, e.g. Q0, Q1,...) on separate lines to write the
two-mode densities for.
(Calculating the values of the wave function on a grid is expensive, so only do this if you
want to inspect the wave function.)

#3 WaveFunctionForModes !TDH
< string vector >

Read in modes (i.e. mode labels, e.g. Q0, Q1,...) to write the wave function for.
(Calculating the values of the wave function on a grid is expensive, so only do this if you
want to inspect the wave function.)

17.2 Advanced keywords

#3 ExpTdHDerivativeProjectionTerms !TDH

Print detailed information on the different terms contributing to the X-TDH derivative.
(This is only a debug option.)

#3 ExpTdHMaxFailedDerivatives !TDH
< integer = 1 >

The number of times the step length of the integrator is reduced before the kappa vec-
tor is reset to zero.
(Use the default setting unless you have good reason for changing it.)

#3 KappaNormThreshold !TDH
< real = 0.95 >

Threshold (TR) for resetting the X-TDH kappa vector to zero for a given mode. This is
done if Rm ≥ TR × π

2 .
(Use the default setting unless you have good reason for changing it.)

#3 LimitModalBasis !TDH
< integer vector >

Limit the number of basis functions for each mode. This option automatically sets the
#3 SpectralBasis keyword and cuts the basis functions corresponding to the highest VSCF
modal energies. Therefore, this option makes most sense when using the modal basis of the
reference VSCF calculation.

97

#3 LinearTdHConstraint !TDH
< string = ZERO > [ZERO] [FOCK]

Set the constraint/gauge operator for L-TDH.
(The ODE integrators are usually better at guessing the initial step size when using the
ZERO constraint. But there is no big difference.)

#3 NoAutocorrConvolution !TDH

Disable convolution of the auto-correlation function. This will increase the effect of Gibbs’
phenomenon, but make the peaks sharper.
(Do not disable the convolution.)

#3 NoLinTdHNormalize !TDH

Do not re-normalize the L-TDH wave function after each time step.
(Do not use this option with imagnary-time propagation unless you have good reason for
doing so. For real-time propagation it does not make much difference.)

#3 ScreenZeroCoef !TDH
< real = 0 >

Threshold for screening away operator terms in the construction of the mean-field ma-
trix/vector. This is only based on the magnitude of the coefficient in front of the operator.
(Do not use screening as it introduces additional approximations and the TDH code is fast
enough without it.)

#3 SpectralBasis !TDH
[< string >]

Transform the primitive basis to an intermediate orthonormal basis which is the VSCF spec-
tral basis of a given operator. The name of the operator may be provided as an argument.
The default is to use the modal basis of the VSCF calculation used for generating the initial
wave packet (this is also the only option for X-TDH). This keyword is set automatically if
the primitive basis set is non-orthogonal.
(Unless a special intermediate basis (e.g. the eigenbasis of the position operator) is required,
this keyword can be omitted.)

#3 Spectrumenergyshift !TDH
< real >

Set a value (in a.u.) to shift the spectrum towards lower energies. If the string ’E0’ is
given, the spectrum will be shifted by the energy of the initial wave packet.

#3 SpectrumInterval !TDH
< real vector >

98

Read two numbers. Only output the spectrum between these two frequencies.

#3 SpectrumOutputScreening !TDH
< real >

Only write the parts of the spectrum with intensity (relative to highest peak) larger than
this threshold.

#3 WfGridDensity !TDH
< integer = 10 >

Density of grid points where the modals are evaluated when plotting the wave function.

#3 WritePrimitiveBasisForModes !TDH
< string vector >

Plot the primitive-basis functions for a given set of modes (i.e. mode labels).

99

Chapter 18

Pes input options

This section details the input options available to the PES module of MidasCpp . The output
of which is an analytical representation of the potential energy surface (PES) and/or molecular
property surface. The PES can afterwards be used in vibrational structure calculations in order
to obtain vibrational ground or excited state energy and excitation energies. Should the PES be
calculated along with the dipole surfaces or polarizability surfaces then infra-red (IR) or Raman
spectra can be calculated.

18.1 General keywords

#2 AdgaGridInitialDim !ADGA
< integer = 2 >

Defines the initial grid dimension, i.e. the initially spanned space in terms of the turn-
ing points for a harmonic oscillator of the indicated quantum level.

#2 AdgaScalFact !ADGA
< real vector = 1.0 1.0 15.0 30.0 30.0 30.0 >

Defines the value of prefactor multipliers to the ADGA convergence thresholds, which al-
lows for different tightness in the convergence at different mode combination levels. The first
number defines the prefactor for the non-coupled grids, while the second number defines the
prefactor for the pair-coupled grids and so forth. See keywords #2 ItVDensThr, #2 ItRe-
sEnThr and #2 ItResDensThr for more information.

#2 AdgaInfo !ADGA
< integer = 0 >
[< string >]

Specifies the mode combination range for an ADGA calculation in order to construct po-
tential energy and/or molecular properties surfaces. The second argument is used to specify
the name of the VSCF calculation, which is to calculate the vibrational density for the
ADGA. If only a single line of input is given to this keyword, then the ADGA will assume
that there is only one VSCF input specified and that this is the one to use.

100

Example for AdgaInfo

#2 AdgaInfo
2 // Specifies up-to 2 mode cuts.
myvscf // Use vscf named ’myvscf’.

#2 AnalyzeDens !ADGA
< string = MEAN > [MEAN] [MAX]

The Adga will use either the mean or maximum VSCF density over all available states
in the construction of potential energy and/or molecular property surfaces. The number of
states to be considered is specified by the #2 AnalyzeStates keyword.

#2 AnalyzeStates !ADGA
< integer = 4 OR integer vector >

Defines the number of states per mode that is to be included in the vibrational density
analysis to determine the convergence of the ADGA. This analysis will use either the average
or the maximum vibrational density over all state depending on the specifications given to
the #2 AnalyzeDens keyword. Note that the vector should have as many elements as there
are modes in the system but if only a single integer is given, then this number of states is
extended to be set for all modes.

#2 AvoidRestart !ADGA !Static

Avoid the use of already calculated single point information.

#2 BoundariesPreOpt !ADGA
< string >

Reads a #1 SinglePoint name, which will be used in the calculation to generate a non-coupled
(1M) potential energy surface with which to determine the starting point for the actual
ADGA calculation. Initial ADGA potential boundaries can in this way be pre-optimized,
preferably with a cheap electronic structure method, before the actual ADGA calculation
commences.

#2 CalcDensAtEachMCL !ADGA

Do a VSCF calculation to obtain the vibrational density after each ADGA iteration in
order to ascertain the performance of the current potential. Note that this keyword only
enables the calculation of the vibrational density and subsequent plotting, i.e. vibrational
density based on potentials with higher order mode combination levels will only be used by
the ADGA if the #2 UpdMeanDensAtEachMCL keyword is specified.

101

#2 CalcEffInertiaInvTens !ADGA !Static

Calculate the effective (Coriolis corrected) inertia inverse tensor components for each sin-
gle point geometry generated in a grid based potential energy surface calculation. Force
fields are then constructed by the way of fitting for the six independent components, which
will be added to the list of calculated properties. References values and the inertia moment
for the reference geometry will also be written to files.

#2 CartesianCoord !Taylor

Indicates that numerical derivatives should be done with respect to Cartesian coordinates.

#2 CutAnalysis

It generates XY type files containing mono and multidimensional cuts of the PES. As exam-
ple a consistent input is given:

Example for CutAnalysis

#2 CutAnalysis
Free 1 fixed 2 0.5 (1D cut with q1 free and q2 fixed at value 0.5)
Free 0 1 fixed 2 1.0 (2D cut with q0, q1 free and q2 fixed at value 1.0)
ENDOFCUTANALYSIS

#2 CutAnalysisMesh
< integer = 10 >

It determines the number of point used to generate the grid in the CutAnalysis procedure.

#2 DynamicAdgaExt !ADGA

Allows the ADGA to calculate and check the density between the potential grid bounds
and the basis set grid bounds in order to dynamically find an optimal point for extending the
potential grid. The grid is expanded when the integrated value of the density between the
basis bound and the considered point is larger than half the value given under the #2 ItRes-
DensThr keyword. Note that this procedure is only invoked if the fraction of VSCF density
outside the ADGA grid is larger than what is permitted by the #2 ItResDensThr keyword.

#2 DisableCoriolisAndInertia !ADGA !Static

This keyword disables the calculation of Coriolis coupling matrices and the moment of inertia
tensor in potential calculations. These are otherwise always calculated from the equilibrium
geometry, as specified in the molecule file on input.

102

#2 Displacement !Taylor

< string = FREQDSIPLACEMENT > [SIMPLEDISPLACEMENT] [FREQDSIPLACEMENT]
< real = 0 >

Defines the type of displacement and step size to be used in calculation of the numerical
derivatives. If the FREQDISPLACEMENT option is choosen, then the displacement will be
weighted by means of the harmonic frequencies, which will need to be supplied
(Recommended step sizes are in the interval of 10−1 − 10−4)

Example for Displacement

#2 Displacement
SimpleDisplacement
1.0e-3

#2 DoAdgaExtAtEachMCL !ADGA

Allows the ADGA to extend the potential grid boundaries at each iteration for all nM
potential energy surfaces if required.

#2 DoExtInFirstIter !ADGA

Allows the ADGA to extend the potential grid boundaries already from the first iteration.
This is in contrast to an ordinary ADGA calculation, where the potential grid boundaries are
only extended from the second iteration and onwards. Specifying this keyword will in general
converge the ADGA in fewer iterations but at the possible cost of additional single points
in the potential. Note that this is not a recommended option when employing a polynomial
fit-basis.

#2 DoubleIncremental !Static !DIE
< string > [DIF] [DIFACT]
< string >

Indicates that a double incremental expansion (DIE) calculation is to be carried out. The
first line specifies the type of double incremental scheme to be used, while the second line
specifies the file in which information on the fragment combinations is placed. This file can
be created using the #4 WriteIncrInput keyword of the FALCON procedure and be edited
manually if necessary. Note, however, that such modifications should be made with caution
as there are currently no additional checks on whether the fragment combination range is
legitimate. This file together with all .mmol files containing the information for the fragment
combinations need to be placed in the FC_savedir folder, which should be present in the
main directory. This is done automatically, when those files are generated using FALCON.
Additionally, one has to provide a static grid PES input. Note that the combination of DIE
and ADGA is not yet implemented.

#2 DumpSPInterval !ADGA !Static
< integer = 100 >

103

Indicates the interval at which calculated single point properties will be dumped to disc
in order to avoid complete restart of a potential calculation in the event that it crashes or
otherwise fails to complete.

#2 ExtendGridSettings !Static
< integer vector >
.
.
[< integer vector >]
< #2 ENDOFEXTENDEDGRIDSETTINGS >

Reads lines in input until #2 ENDOFEXTENDEDGRIDSETTINGS is found. This key-
word is used to change the default settings given under the #2 Staticinfo keyword. It may
be used either to overwrite some information in the #2 Staticinfo or to add more mode
combinations than the ones defined under #2 Staticinfo. The information for each mode
combination should should be provided on one line containing (1) dimension of the mode
coupling (Mdim), (2) the specific mode coupling (length of vector is Mdim), (3) the number
of grid points for each mode within the specific mode coupling (length of vector is Mdim)
and (4) the fractioning for each mode within the specific mode coupling (length of vector is
2 * Mdim). For the fractioning the first Mdim elements refer to "minus" displacements while
the next Mdim elements refer to "plus" displacements. The example below adds a 3-Mode
coupling (3) consisting of mode number (0 1 2) with 4 grid points in each mode (4 4 4) and
a fractioning of 1/2 for both "minus" and "plus" displacements for each mode (1/2 1/2 1/2
1/2 1/2 1/2). To be used in connection with calculations using grids.

Example for ExtendGridSettings

#2 EXTENDEDGRIDSETTINGS
3 0 1 2 4 4 4 1/2 1/2 1/2 1/2 1/2 1/2
#2 ENDOFEXTENDEDGRIDSETTINGS

#2 FitBasis !ADGA !Static

Directs input to the fit-basis block which defines the functions that will be used in the
fitting routine in order to obtain potential energy or molecular property surfaces, see section
19.

#2 FreqScalCoordInFit !ADGA !Static

Use frequency-scaled coordinates in the fitting routine, i.e. use
√
ωmQm. The default is

true.
(Recommended when fitting with higher order polynomials.)

#2 GenHessian !Taylor

< integer >

104

< string >
.
.
[< string >]

Indicate for which property or properties Hessians (and gradients) should be generated for.
Note that normal coordinates and harmonic vibrational frequencies will additionally be cal-
culated by specifying this keyword.

Example for GenHessian

#2 GenHessian
4
Ground_State_Energy
X_Dipole
Y_Dipole
Z_Dipole

#2 GridMaxDim !Static
< integer = 10 >

Defines the maximum physical dimension of the grid in terms of the turning points for a
harmonic oscillator of the indicated quantum level.

#2 ItDensThr !ADGA
< real = 1.0 · 10−2 >

Convergence threshold for the ADGA, when constructing potential energy or molecular prop-
erty surfaces. This threshold sets the allowed relative error of integrals over the VSCF density.
(Keywords #2 ItVDensThr and #2 ItNormVDensThr are generally more recommended op-
tions.)

#2 ItNormResEnThr !ADGA
< real = 1.0 · 10−6 >

Convergence threshold εabs for the ADGA, when constructing potential energy or molecular
property surfaces. This threshold sets the allowed absolute error of integrals over norm-like
quantities √∫

i

(√
ρavecurr (Qm)V ~mn

curr (Qm)−
√
ρaveprev (Qm)V ~mn

prev (Qm)
)2
dQm < εabs

∧

√∫
i

(√
ρavecurr (Qm)V ~mn

curr (Qm)
)2
dQm < εabs,

where intervals with associated integrals that fall below this threshold are considered con-
verged in the ADGA.
(Not recommended for mode combinations of around 3 or higher, since the above quanti-
ties are not (currently) efficiently computable utilizing the sum-over-product structure of the
potential. In such cases, consider using the #2 ItResEnThr keyword instead.)

105

#2 ItNormVDensThr !ADGA
< real = 1.0 · 10−2 >

Convergence threshold εrel for the ADGA, when constructing potential energy or molecular
property surfaces. This threshold sets the allowed relative error of integrals over norm-like
quantity √∫

i

(√
ρavecurr (Qm)V ~mn

curr (Qm)−
√
ρaveprev (Qm)V ~mn

prev (Qm)
)2
dQm√∫

i

(√
ρavecurr (Qm)V ~mn

curr (Qm)
)2
dQm

< εrel,

where intervals with associated integrals that fall below this threshold are considered con-
verged in the ADGA.
(Not recommended for mode combinations of around 3 or higher, since the above quanti-
ties are not (currently) efficiently computable utilizing the sum-over-product structure of the
potential. In such cases, consider using the #2 ItVDensThr keyword instead.)

#2 ItResDensThr !ADGA
< real = 1.0 · 10−3 >

Convergence threshold ερ for the ADGA, when constructing potential energy or molecu-
lar property surfaces. This threshold sets the maximum allowed fraction of VSCF density
that can lay outside the ADGA grid. If too much density is found outside of the current
ADGA grid, then the potential boundaries are expanded until this is no longer the case.

#2 ItVDensThr !ADGA
< real = 1.0 · 10−2 >

Convergence threshold εrel for the ADGA, when constructing potential energy or molec-
ular property surfaces. This threshold sets the allowed relative error of the integral over
VSCF density times potential. The intervals with relative error of the integrals over this
products that falls below this threshold are considered converged in the ADGA.

#2 IoLevel !ADGA !Static
< integer = 0 >

Indicates the IoLevel of the PES module.

#2 ItPotThr !ADGA
< real = 1.0 · 10−2 >

Convergence threshold for the ADGA, when constructing potential energy or molecular prop-
erty surfaces. This threshold sets the allowed relative error of integrals over the potential.
(Keywords #2 ItVDensThr and #2 ItNormVDensThr are generally more recommended op-
tions.)

106

#2 ItResEnThr !ADGA
< real = 1.0 · 10−3 >

Convergence threshold εabs for the ADGA, when constructing potential energy or molec-
ular property surfaces. This threshold sets the allowed absolute error of the integral over
VSCF density times potential value. The intervals with absolute error and absolute value of
the integrals over this products that falls below this threshold are considered converged in
the ADGA.

#2 MeanDensOnFiles !ADGA

Specifying this keyword disables the VSCF calculations performed as part of the ADGA,
which means that the files containing the mean density should be provided by the user and
placed in the appropriate #2 AnalysisDir directory. Note that a VSCF input can still be
given in order to perform a VSCF calculation after the ADGA is finished.

#2 MultiLevelPes !ADGA !Static
< label integer >
.
.
[< label integer >]

The label is used to specify which #1 SinglePoint electronic structure method is to be used
for a given level, while the integer specifies the maximum level of mode-coupling that should
be achieved. Each multilevel calculation will be run in its own sub-directory of the main- and
scratch directory according to the specified order in which they are given. After all multilevel
calculations are done the surfaces will be merged according to the input of this keyword and
the final merged surfaces will appear in a sub-directory named FinalSurfaces, (i.e. in case
of only a single multilevel, then the surfaces found in the FinalSurfaces sub-directory and
the multilevel-specific sub-directory will be identical). The initially spanned space for the
first multilevel ADGA calculation will be that specified under the #2 AdgaGridInitialDim
keyword but all subsequent multilevel ADGA calculation will use the grid boundaries of the
previous converged ADGA calculations as the initially spanned space. This is done as a con-
verged ADGA calculation will generally determine grid boundaries that are more appropriate
than what can be determine from a harmonic oscillator guess. Note that all potential energy
or molecular properties surfaces in MidasCpp are treated as multilevel surfaces regardless of
the actual number of surfaces and that multilevels are always counted from 1. An example
is given below.

Example for MultiLevelPes

#2 MULTILEVELPES
generic_sp_ccsdt 1
generic_sp_ccsd 2
generic_sp_rimp2 4

107

#2 NiterMax !ADGA
< integer = 10 >

Defines the maximum number of iterations that can be used in the construction of potential
energy/molecular properties surfaces with the ADGA. Note that this value has to comply
with NNiterMax +NItExpGridScalFact < 29.

#2 NoNormalCoord

Indicates that normal coordinates should not be used in generating displaced structures
for use with the potential energy and/or molecular property surface construction. Cartesian
coordinates will instead be used.

#2 NoScalCoordInFit !ADGA !Static

Do not use scaled coordinates in the fitting routine, i.e. use 1 ·Qm.

#2 Nthreads !ADGA !Static
< integer = --numthreads OR integer vector > [0 to --numthreads]

Read a line with one (or more) integer(s), defining the number of threads per MPI rank
used in the Midas PES module for each multilevel surface calculation specified under the
#2 MultiLevelPes keyword. If only one integer is given but multiple multilevel surface cal-
culations have been specified, then this will be used as the number of threads per MPI rank
for each multilevel surface calculation. The keyword must be used in conjunction with the
--numthreads command-line option, which will in any case set the maximum number of
single-point calculations that can be run simultaneously, regardless of the value of this key-
word. A value of 0 (for any/all of the multilevels) will run as many threads as has been spec-
ified by the --numthreads command-line option. Setting a value lower than --numthreads

can be desired if the individual single-point calculations also does some parallelization on
their own.

Note that this keyword can be used in connection with the command line arguments to
mpirun, e.g. -np <n_mpi>. In the example setup described here Midas will run #2 Nthreads
times <n_mpi> singlepoint calculations in parallel.

#2 PesGridScalFac !ADGA !Static
< real = 1.0 OR real vector >

Defines the scaling factors that are multiplied onto the (1 dimensional) classical turning
points in order to setup the physical dimension of the grid. Numbers should be provided as a
vector starting with mode 0 and up to mode N −1. The order of the modes are that given in
the Molecule.mol file. If this keyword is inactive a common scaling factor of 1.0 is assigned.

108

#2 PesFGMesh !Static
< integer = 2 OR integer vector >

If specified then read in a sequence of integers n1, n2, . . . , nMCR specifying the mesh of
the finer grid onto which subsequent polynomial fitting will be performed. The number of
integers should be equal to the maximum number of vibrational normal modes which are
coupled. Then, for the i -th mode coupling, the number of intervals in each direction will be
set to ni times the number of intervals which defines the coarse grid (CG). Note that if a
single integer is specified, this will be applied to the whole set of normal mode(s) couplings.

#2 PesFGScalFac !Static
< real = 0.9 OR real vector >

Defines the portion of the CG to be used when generating the finer grid. For example a
value of 0.9 means that boundaries for the finer grids are equal to 0.9 times the boundaries
actually set in the generation of the coarse grid. (and specified with the #2 PesGridScalFac
key).

#2 PesPlotRealEsp !ADGA

If specified then .data files will be written to the #2 AnalysisDir directory over the course
of an ADGA calculation with non-fitted single point information. This information is not
limited to energy, i.e. all available property information will be written into seperate files.

#2 PesUserDefinedBound !Static
< real vector > [<integer> AllPot] [<integer> OnlyFullPot]

Defines the physical dimension, when multiplies with the corresponding elements from #2 Pes-
GridScalFac of the grid. Numbers should be provided as a vector starting with mode 0 and
up to mode N − 1. The order of the modes are that given in the Molecule.mol file. If this
keyword is inactive the physical dimension will be chosen on the basis of the HO quantum
number.

#2 PlotAdga2D !ADGA

Indicates that 2-dimensional potential cuts should be plotted and stored on file in the direc-
tory specified under the #2 AnalysisDir keyword.

#2 PotValsFromFile !ADGA

In the ADGA procedure for PES construction, potential values for the lowest mode com-
binations are obtained from the operator file, if not already available from a single-point
calculation. This can happen if the ADGA grid becomes finer on higher-order mode combi-
nation than was necessary for its corresponding lower-order mode combinations.

109

#2 SaveDispGeom !ADGA !Static

Save all geometries that are generated during the constructing of the potential energy or
molecular property surface calculation to a file named ’displaced_structures’, which will be
situated in the #2 AnalysisDir directory.

#2 SaveEspOut !ADGA !Static

Save each individual electronic structure calculation output file.

#2 SaveInpFiles !ADGA !Static

Save each individual electronic structure calculation input file.

#2 SaveItOperFile !ADGA

A copy of the operator file (.mop) is generated for each ADGA iteration if this keyword
is specified. This is especially useful if one is interested in tracking the evolution of the op-
erator files.

#2 SaveSpScratchDir !ADGA !Static

Specifying this keyword will save the scratch directory for each individual single point cal-
culation, which is carried out while constructing the potential energy or molecular property
surface.
(A recommended option for debug purposes.)

#2 Staticinfo !Static
< integer >
< integer vector >
< integer vector >

Read information for default grid settings. Read three lines containing (1) the mode com-
bination range (2) a vector of grid points in each mode mode combination level and (3) a
vector containing the fractioning in each mode combination level.

Example for Staticinfo

#2 StaticInfo
2 // Mode combination level is 2
16 8 // 16 and 8 grid points in 1- and 2-Mode couplings
1 3/4 // Fractioning: 1 and 3/4 for 1- and 2-Mode couplings

#2 Symthr !ADGA !Static
< real = 1.0 · 10−6 >

110

Threshold for how similar different single point geometries need to be in order to be called
symmetry equivalent.

#2 Symmetry !ADGA !Static
< string >

Indicates the point group symmetry to be used for surface construction, where some sin-
gle points might be symmetry equivalent. Currently the Abelian point groups, i.e. Ci, Cs,
C2, D2, C2v, C2h and D2h are implemented. If this keyword is not specified, then the point
group is assumed to be C1 and symmetry will therefore not be used in surface construction.
The molecule must be oriented such that the symmetry elements (mirror planes, rotation
axes) align with the Cartesian x, y, z planes/axes. Note that the symmetry used in surface
construction does not, in any way, influence the symmetry that might be used by an elec-
tronic structure program.

#2 TaylorInfo !Taylor

< integer integer integer >

Defines how Taylor expansion in terms of derivative force fields and derivative property
surfaces should be done in terms of i) property order, ii) mode combination range and iii)
Taylor expansion maximum order. Property order is the order of the property from wich
the numerical derivatives should be calculated which is at the moment limited to 0, e.g. the
energy. The mode combination range is the maximum number of modes allowed to coupled.
Note that specifying this keyword overrides any indication of MC level given under #2 Mul-
tiLevelPes but that an integer number is still required.

#2 ThresFreq !Taylor

< real = 20 >

Sets the threshold for sorting out harmonic frequencies based on their value in cm−1 describ-
ing translation/rotation. To be used in connection with derivative force fields and derivative
property surfaces.

#2 UpdMeanDensAtEachMCL !ADGA

Allows the ADGA to calculate and update the vibrational density at each iteration for
all nM potential energy surfaces. Note that by specifying this keyword, the #2 CalcDen-
sAtEachMCL keyword will automatically be set to true.

#2 UseFitBasis !ADGA !Static
< string >

Indicates the fit-basis to be used by name.

111

#2 VibPol !ADGA !Static !Taylor

Calculate the static vibrational polarizability using the double-harmonic approximation. As-
sumes that the dipole moment components have been requested in the input to the electronic
structure calculation. To be used in connection with derivative force fields and derivative
property surfaces.

18.2 Advanced keywords

#2 BarFileStorageType !ADGA !Static
< string = ONFILE > [ONFILE] [INMEMORY]

Defines how the single point information should be handled during the course of the in-
terpolation and/or fitting procedures. The current options are

Options

– ONFILE
Information will only be read into memory from the .mbar files for a single mode
combination and property at any given time.

– INMEMORY
Information pertaining to all mode combinations and properties will be read into
memory from the .mbar files before the interpolation and/or fitting procedures
commences.

#2 Diatomic !ADGA !Static !Taylor

Special option for diatomics used to reduce the number of electronic structure calculations.
It is assumed that the molecule is placed along the Z-axis.

#2 ItExpGridScalFact !ADGA
< integer = 2 >

The integer given to this keyword will be used as exponent to the number 2. This number is
used as a scaling factor for the absolute size of the grid that can come under consideration
in an ADGA calculation, i.e. the maximum boundaries for the box wherein a potential cal-
culation can take place. This scaling factor is applied as a front factor in the expression for
the box boundaries: 2NItExpGridScalFact · 2NNiterMax , where NiterMax is set by the #2 NiterMax
keyword. The maximum boundaries for a given potential calculation can thus be expanded
by 2NItExpGridScalFact compared to the case were the scaling factor is set to zero.

#2 NoScreenSymPotTerms !ADGA !Static

If a symmetry calculation is requested the potential energy surface will be fitted with sym-
metry adapted polynomial function. The option inhibits the screening of the polynomial

112

function.
(Useful for debuging.)

#2 PolyInterpolationPoints !ADGA
< integer = 4 >

Defines the number of points to be used for polynomial interpolation specifically when the
ADGA evaluated the integral over vibrational density.

#2 ScreenOperCoef !ADGA !Static
< string = ON > [ON] [OFF]
< real = 1.0 · 10−14 >

Turns operator screening on or off when writing operator terms to file by specifying ei-
ther ON or OFF in accordance with a screening threshold in case screening is turned on.

#2 GLQuadraturePoints !ADGA !Static
< integer = 12 >

Specifies the number of points used in numerical integration of potential energy operator
terms by means of Gauss-Legendre quadrature. Note that the n-point Gaussian quadrature
rule always applies, i.e. numerical integration can be considered correct for polynomials of
degree 2n− 1 or less.
(Recommended settings are in the interval of 6− 12.)

113

Chapter 19

FitBasis input options

This section details the input options available when performing fits in order to obtain analytical
expressions for the potential energy or molecular property surfaces. There is no restrictions on
the type of fit-basis functions to be used but no warranty is given for user-defined functions.
Furthermore it should be noted that the default set of fit-basis functions contains only polynomial
functions and if nothing else is specified in the input then these are automatically used in the
fitting routine of MidasCpp .

19.1 General keywords

#3 AddFitFuncsConserv !FitBasis

Allows the ADGA to be more conservative in the addition of fit functions, compared to
the standard addition scheme set by specifying the #3 FitFunctionsMaxOrder keyword. The
number of fit functions will now be given as

Nfunc(Qk) =

{
NSP − 2, if NSP even,
NSP − 1, if NSP odd.

This will in general ensure more stability in the fitting routine but can be especially helpful
if many fit functions are used but only a few single points are added in each ADGA iteration.

#3 AutoFitFunctions !FitBasis

This will allow the program to carry out the linear fit with different numbers of fit-basis
functions in order to establish when the best possible fit is achieved based on the root-mean-
square deviation (RMSD) value.

#3 DefFromFile !FitBasis
< string >

Directs the input to a file containing all or additional fit-basis input. The format is the
same as for the present section but the file should begin and end with the keywords #0

MIDASFITINFOFILE and #0 MIDASFITINFOFILEEND respectively.

114

#3 FitBasisEffInertiaInvMaxOrder !FitBasis
< integer = 4 OR integer vector >

The format is similar to the #3 FitBasisMaxOrder keyword and defines the maximum order
of higher dimensional terms for fitting the effective inertia inverse tensor components, which
is generated through the linear fitting procedure. Note that this keyword will only take any
effect if the #2 CalcEffInertiaInvTens keyword is specified.

#3 FitBasisMaxOrder !FitBasis
< integer = 12 OR integer vector >

Defines the maximum order of higer dimensional terms in the potential, which are gener-
ated through the linear fitting procedure. The vector should have as many elements as the
requested mode-coupling level but in case only a single integer is given, it is extended to all
mode-coupling levels. The complete functional basis for higher dimensions will be generated
as a direct product of the associated mono-dimensional bases.

#3 FitFunctionsEffInertiaInvMaxOrder !FitBasis
< integer = 4 4 4 4 4 OR integer vector >

The format is similar to the #3 FitFunctionsMaxOrder keyword and defines the maximum
order of the one-mode fit-basis functions to be used in the linear fitting of effective inertia
inverse tensor components. Note that this keyword will only take any effect if the #2 Cal-
cEffInertiaInvTens keyword is specified.

#3 FitFunctionsMaxOrder !FitBasis
< integer vector = 12 12 12 12 OR integer >

Defines the maximum order of the one-mode fit-basis functions used in the linear fit of
single points. If a vector of integers is given, then this should have as many elements as
there are vibrational modes in the molecular system under consideration. Alternatively, if
only a single integer is given, then this number is used to define the maximum order for all
one-mode fit-bases. Note that the actual maximum order of fit-basis functions in a given
iteration depends on the number of available single points in the potential. The number of
fit functions is given as

Nfunc(Qk) =

{
NSP, if NSP even,
NSP − 1, if NSP odd.

This applies until the maximum order of the fit functions is reached.

#3 GenFitBasisDef !FitBasis

Directs the input to the general fit-basis handler, see section 20.

115

#3 IoLevel !FitBasis
< integer = 0 >

Indicates the IoLevel of the FitBasis block.

#3 Name !FitBasis
< string >

Identify the fit-basis by a name.

19.2 Advanced keywords

#3 Constants !FitBasis
< string real >

Gives a series of constant names and values in the format "const_name 1.1213", the val-
ues are read as strings and real value.

#3 FitAllMCIterGrids !FitBasis

Specifying this keyword means that all grids for each mode combination will be fitted at
each ADGA iteration, regardless of new points have been introduced into the grids. Note
that all grids will be refitted at a given ADGA iteration if extrapolation/interpolation pro-
cedures using derivative information is used.

#3 FitMethod !FitBasis
< string = SVD > [SVD] [NORMALEQ]

Defines the method used for extracting the least squares parameters in the linear fitting.
Options are NORMALEQ for which the solution is set via normal equations or SVD which make
use of the singular value decomposition.

#3 Functions !FitBasis

Read a set of functions in the same format as #4 FitFunctions.

#3 NthreadsFit !FitBasis
< integer = --numthreads > [0 to --numthreads]

Indicates the number of threads used locally in the fitting routine. If this keyword is not
specified, then the program defaults to the number of threads specified at the command-line
level when commencing a calculation. A value of 0 will run as many threads as has been
specified by the --numthreads command-line option.

116

#3 SVDFitCutOfThr !FitBasis
< real = 1.0 · 10−13 >

Specifies the relative cut off threshold for singular values in relation to the largest singu-
lar value during SVD fitting.

117

Chapter 20

GenFitBasisDef input options

This section details the input options available to the general fit-basis handler.

20.1 General keywords

#4 FitFunctions !GenFitBasis
< string >

Defines the complete set of fit-basis functions, which are to be used in the linear fitting
procedure.

#4 Modes !GenFitBasis
< integer vector >

Defines the vibrational modes that should be linearly fitted with the set of fit-basis func-
tions specified under the #4 FitFunctions keyword. Note that the modes are counted from
0 to 3N − 7(6) in accordance with appearance in the Molecule.mol file.

#4 OptFunc !GenFitBasis
< string >

Give a function which is used to optimize the parameters of the functions given under
#4 FitFunctions the format of the input is given in an example. First a function defini-
tion is specified, the name, "F", is not required here what is needed is a list of variables in a
parenthesis separated by commas. Second a line giving the functional which should be fitted
non linearly using the parameters given. Lastly a set of starting guesses where the first is
irrelevant since we are not optimizing with respect to Q.
(Typical values for dissociation energy can be found in the range of 0.05 to 0.4.)

Example for OptFunc

#2 OptFunc
F(Q,alpha,De) De*(1-EXP(-alpha*Q))^2 (0.0,0.1,0.1)

#4 OptFuncThr !GenFitBasis
< real = 1.0 · 10−8 >

118

This number determines the gradient convergence for the non-linear optimization of pa-
rameters in the function specified under #4 OptFunc.

#4 Props !GenFitBasis
< string vector >

Defines the properties that the set of fit-basis functions given under the #3 GenFitBasis-
Def keyword should be applied to in the linear fitting procedure. The strings should match
the common Midas property names, e.g. energy, inertia or dipole, as can be found in the last
word, i.e. after the last "_", of the descriptor given in the midasifc.propinfo file.

119

Chapter 21

System input options

This section details the input options available to both defining or modifying a molecular system.
The #2 SystemDef keyword block is used to define individual subsystems of the full molecular
system but if only one subsystem is defined then this is treated as the full system. The #2 ModSys
keyword block is used to specify in which manner the coordinates of a given subsystem should be
modified.

21.1 General keywords

#1 System

Read System input until next level #1 input key.

#2 ModSys

Read definitions for modifying a molecular system.

#3 DefineSymmetry

Reads in a line with two strings, the first specify a point group and the second specify
the primary axis. This keyword indicates which point group the vibrational coordinates
should belong to, which can be either the same point group as the nuclear coordinates or
a point group of lower symmetry. The default point group for a molecule not in a normal
coordinate representation is the extupC1 point group.
(Note that this keyword will only have an effect if the ROTCOORD scheme is selected under
the #3 ModVibCoord keyword.)

#3 ModVibCoord !ModVibCoord
< string > [FREQANA] [FALCON] [ROTATEMOLECULE] [ROTCOORD] [TRANSFORMPOT]

Indicates the scheme with which to modify the vibrational coordinates, see sections 23
, 24 for more details.

#3 RemoveGlobalTr

120

Remove the global translational and rotational degrees of freedom before entering the se-
lected scheme under the #3 ModVibCoord keyword. This is useful for all global modification
schemes, e.g. ROTCOORD or FREQANA, as it ensures that purely vibrational degrees of
freedom are present.

#3 SysNames
< integer >
< string >

Indicates the number of subsystem names, followed by lines giving the names.

#2 SystemDef

Read definitions for a molecular system until next #2 SystemDef or #2 ModSys keyword
is encountered. Note that several systems can be defined at the same time in which case
these will be treated as individual subsystems of the full systems. If only one subsystem is
specified then this is regarded as the full system.

#3 AddLocalTransRot

Switches on the addition of the local translations and rotations for each subsystem.

#3 CalcModes
< string = NO > [NO] [CART] [LOCALTRANSROT]

Specifies if and which initial coordinates should be generated for the system. NO indicates
the no additional coordinates should be generated, CART means that Cartesian coordinates
should be generated, while LOCALTRANSROT means that translational and rotational co-
ordinates should be generated.
(The modes are only initialized for groups that contain ACTIVE atoms.)

#3 FragmentType
< string = PREDEFINED > [ATOM] [PREDEFINED]

Defines the partition of the total molecular system into subsystems. ATOM indicates that
each atom is a subsystem, while PREDEFINED indicates that the specification of subsys-
tems is found in the file given by the #3 MoleculeFile keyword.

#3 MoleculeFile
< string > [MIDAS] [MOLDEN] [TURBOMOLE] [ORCAHESS] [SINDO]
< string >

The first string indicates in which format the molecule file is given, while the second string
indicates the path and name of the file in which molecular structure information is provided.

121

Information given in the molecule file depends on the actual calculation at hand but usually
involdes the reference geometry in Cartesian coordinates, vibrational frequencies and vibra-
tional coordinates.
(The standard setting should be MIDAS for all purposes regarding surface generation. For
more information on the MIDAS molecule format see A.1.)

Example for MoleculeFile

#3 MoleculeFile
MIDAS // Read input in MidasCpp molecule format (.mmol).
mymolecule.mmol // Read file ’mymolecule.mmol’ in main-directory.

#3 Name
< string >

Indicates the name of the system or subsystem for later reference.

122

Chapter 22

Falcon input options

This section details the input options for the iterative merge of subsystems, which is known as the
FALCON algorithm.

22.1 General keywords

#3 ModVibCoord !ModVibCoord
< string > [FREQANA] [FALCON] [ROTATEMOLECULE] [ROTCOORD] [TRANSFORMPOT]

When called with FALCON as argument, the following keywords are available.

#4 HessType !FALCON
< string = NO > [NO] [GIVEN] [CALC]

Defines the way the Hessian is obtained for the mode optimization. Current possibilities
are: i) Hessian is not used (NO) and modes are not optimized, ii) the full Cartesian Hessian is
provided in the Molecule.mmol file (GIVEN), and iii) the reduced Hessian is calculated using
FreqAna (CALC). If modes are not to be optimized, what can be the case in, e.g., a Falcon
preparatory run, the default option NO should be used.

#4 MaxSubSysForFusion !FALCON
< integer = ∞ >

Reads in the maximum number of initial subsystems, which can be fused in the Falcon
algorithm. Reaching this threshold, the procedure is considered as converged.

#4 MaxSubSysForRelax !FALCON
< integer = ∞ >

Reads in the maximum number of initial subsystems in a fusion groups to be relaxed.

#4 MinCouplingForFusion !FALCON
< real = 0.0 >

123

Reads in a value specifying an upper bound to the coupling estimates for fusion. Reach-
ing this threshold both constituting subsystems are considered converged.

#4 MinCouplingForRelax !FALCON
< real = 0.0 >

Reads in a value specifying an upper bound to the coupling estimate for relaxation of the
fusion group.

#4 ModeOptType !FALCON
< string = NO > [NO] [HESSIAN]

Sets the way the (local) modes are optimized after separating out the translations and rota-
tions. Current choices are: i) no further modification of the coordinates is performed (NO),
ii) performing diagonalization of the reduced Hessian (HESSIAN). In the latter case, #4 Hes-
sType has to be set.

#4 WriteIncrInput !FALCON
< integer = 0 >

Sets up the input for a double incremental calculation. Reads in the number for a maxi-
mal fragment combination level to be considered.

22.2 Advanced keywords

#4 Coupling !FALCON
< string = DIST > [DIST] [DISTACT]

Reads in one line with the mode coupling type to be used. The current options are: i) the
closest distance between atoms (DIST), ii) the closest distance to an active atom (DISTACT).

#4 Degeneracy !FALCON
< real = 0.001 >

Reads in the treshold for considering the coupling estimates degenerate in the fusion process.
(The value of 0.001 is usually used in combination with the distance-based coupling)

#4 MaxDistForConn !FALCON
< real = ∞ >

Reads in the threshold for the maximum distance (in bohr) between the closest atoms in
two subsystems to consider them connected. Reaching this threshold, the procedure is con-
sidered as converged.

124

#4 PrepRun !FALCON

Performs only a preparation run, where subsystems are formed but no operations with modes
are carried out.

125

Chapter 23

FreqAna input options

This section details the input options for performing (semi-numerical gradient-based) frequency
analysis to obtain the harmonic frequencies and normal modes, see section 4.3. This is done
using electronic single point calculations with input as described in section 10 in order to calculate
gradients for the displaced nuclear configurations. The gradients are subsequently used to calculate
the Hessian, which is afterwards diagonalized.

If #4 Targeting is enabled the program uses the modes in the MoleculeInfo file (i.e. those listed
under the keywords #1VIBCOORD -> #2COORDINATE as described in A.1) as targets when iteratively
solving mass-weighted Hessian eigenvalue problem.

23.1 General keywords

#4 DispFactor !ModVibCoord
< real = 0.01 >

The displacement factor used when creating the displaced configurations. (δ in section 4.3.)

#4 DumpInterval !ModVibCoord
< integer = 10 >

Interval for dumping property files to disc (as a safety in case of crash).

#4 ItEqBreakDim !ModVibCoord
< integer = 1000 >

Break dimension for the iterative solver. Only applicable if #4 Targeting is enabled.

#4 ItEqEnerThr !ModVibCoord
< real = 10−8 >

Convergence threshold for the relative change in energy for the iterative solver (εenergy in
section 4.3). Only applicable if #4 Targeting is enabled.

126

#4 ItEqMaxIt !ModVibCoord
< integer = 1000 >

Maximum number of iterations for the iterative solver. Only applicable if #4 Targeting
is enabled.

#4 ItEqResThr !ModVibCoord
< real = 10−8 >

Convergence threshold for the norm of the residual for the iterative solver (εres in section 4.3).
Only applicable if #4 Targeting is enabled.

#4 MolInfoOutName !ModVibCoord
< string = MoleculeInfo_FreqAna.mmol >

Name of the output file that the resulting MoleculeInfo (containing eigenfrequencies and
-vectors) should be written to.

#4 NonSymmetricHessian !ModVibCoord

If this keyword is set the (reduced) Hessian is not symmetrized before diagonalization.

#4 OverlapNMax !ModVibCoord
< integer = unlimited >

Maximum number of eigenvectors included in the overlap sum for each target, i.e. it can
override the specification set under #4 OverlapSumMin (noverlap,max in section 4.3). Only
applicable if #4 Targeting is enabled.

#4 OverlapSumMin !ModVibCoord
< real = 0.8 >

When expanding the reduced subspace the iterative solver uses as many of the eigenvec-
tors of the last iteration as is required to achieve a minimum accumulated overlap of this
much for each target (εoverlap in section 4.3). Eigenvectors are allowed to occur in the overlap
sums for several targets. Only applicable if #4 Targeting is enabled.

#4 ProcPerNode !ModVibCoord
< integer = 1 >

Number of processes per node, i.e. maximum number of single-points to run simultaneously.
(Currently only support for running on 1 node.)

127

#4 RotationThr !ModVibCoord
< real = 10−6 >

The rotation/symmetry threshold used in singlepoint calculations when trying to deter-
mine the rotation that was done to the molecular structure by the electronic structure
program(which is necessary for properly rotating the gradients back to the MidasCpp ref-
erence frame).
(If MidasCpp is unable to determine the rotation it can in some cases help to loosen this
threshold slightly (e.g. by an order of magnitude).)

#4 SinglePointName !ModVibCoord
< string = SP_FreqAna >

Name of singlepoint calculation. Must correspond to a name given under #2 Name in
#1 SinglePoint (see chapter Singlepoint input options).

#4 Targeting !ModVibCoord

Tries to solve the Hessian eigenvalue problem iteratively using projection on a reduced space.
The iterative solver tries to target the eigenvectors that have the greatest overlap with the
given targets. The targets should be given as modes in the MoleculeInfo file, i.e. as coordinate
vectors under the #2COORDINATE keyword. The keywords #4 ItEqEnerThr, #4 ItEqResThr,
#4 ItEqBreakDim, #4 ItEqMaxIt, #4 OverlapSumMin, #4 OverlapNMax, only have effect
if this keyword is set.

128

Chapter 24

RotCoord input options

This sections details the input options available for submitting the molecular subsystem to rota-
tions of the vibrational coordinates in accordance with different optimization criteria in order to
transform these to more suitable sets of vibrational coordinates.

The transformation of one general set of vibrational coordinates into another is carried out with
the iterative Jacobi sweep algorithm in combination with numerical minimum search techniques.
A combination of the numerical Fourier series expansion and Newton minimization techniques is
applied in order to obtain an optimal rotation angle with regards to an optimization criterion.

24.1 General keywords

#4 ConvThr !ModVibCoord
< real = 1.0 · 10−6 >

Defines the convergece threshold for the vibrational coordinate rotation scheme with re-
gards to the energy or property being optimized.

#4 FreqScreen !ModVibCoord
< integer = 100 >

Defines that rotations in the Jacobi sweep algorithm can be disregarded or screened away if
the mode-pairs to be rotated have a difference in frequencies that are larger than the number
given to this keyword.
(The maximum frequency difference is assumed to be provided in units of reciprocal centime-
ters.)

#4 FunctionType !ModVibCoord
< string = GRID > [GRID]

Specifies the type of function for vibrational coordinate rotation. GRID means that the
function will be treated in a grid-based fashion.

#5 FourierPt
< integer = 2 >

129

Defines the number p, which gives the number of points 2p + 1 to be used in the Fourier
series expansion step of the optimization.

#5 NewtonConv
< real = 1.0 · 10−6 >

Defines the convergence threshold for the Newton minimization step of the optimization.
(Note that the maximum number of iterations for the Newton minimization is hard-coded to
10.)

#5 OptParam
< string = VALUE > [GRADHESS] [GRADIENT] [GRADIENTNORM] [VALUE]

Specifies the parameter type with which to evaluate the changes to the optimization cri-
terion. GRADHESS means that convergence checks are carried out by using the largest
element of the optimization criterion gradient, while simultaneously checking that the Hes-
sian is positive. GRADIENTNORM means that convergence checks are carried out by using
the norm of the optimization criterion gradient. GRADIENT means that convergence checks
are carried out by using the largest element of the optimization criterion gradient. VALUE
means that convergence checks are carried out by using the the optimization criterion value
directly.
(The GRADHESS option is generally recommended but will not work if the LOCALIZATION
option is chosen under the #4 Measure keyword is chosen.)

#5 PlotOnly

Indicates that a single sweep should be carried out but without doing any rotations. The
property chosen as optimization property can thereby be plotted as a function of rotation
angle.

#5 PlotPoints
< integer = 0 >

Defines the number r, which gives the number of points 2r + 1 to be used for plotting
the property chosen as optimization property as a function of rotation angle.
(If zero is given as input to this keyword, then no plots will be supplied.)

#4 Measure !ModVibCoord
< string > [HYBRID] [NONHYBRID]
< string real > [LOCALIZATION] [OPTIMIZATION]
[< string real >] [LOCALIZATION] [OPTIMIZATION]

Specifies the type of optimization criterion that should be used to check the convergence
for the vibrational coordinate transformation. HYBRID means that the optimization cri-
terion should be a combination of the two different measures given on the two following
lines, which will lead to the generation of HOLCs. This furthermore requires the input of
the weighting between the different measures. NONHYBRID means that the optimization

130

criterion will only be a single measure given on the following line, which will lead to the gen-
eration of OCs or LCs. This option does not requires the use of weights. OPTIMIZATION
means that a minimization of the VSCF energy with respect to variations in both the modals
and vibrational coordinates should be used. LOCALIZATION means that minimization with
respect to a geometrical localization criterion should be used.

#5 CalulationType
< string = VSCFCALC > [GROUNDSTATE] [HARMONICGROUNDSTATE] [STATEAVERAGE]

Specifies the type of VSCF calculation to provide the energy. HARMONICGROUNDSTATE
means that only harmonic contributions to the ground state energy will be used, which makes
for a very fast calculation as no VSCF mean-field needs to be constructed. GROUNDSTATE
means that only the VSCF ground state energy will be calculated. STATEAVERAGE means
that the VSCF energy will be an average over multiple state energies, where both ground
state energy and/or excited state energies will be calculated.
(The HARMONICGROUNDSTATE option should only be used if the vibrational coordinates
are to be rotated in a purely harmonic potential.)

#5 Name
< string >

Specifies the name of the VSCF calculation.

#4 MinRotAng !ModVibCoord
< real = −1.0 >

Defines the minimal rotation angle for which to carry out rotations of mode-pairs. If a
rotation angle is smaller than the number given to this keyword, then the corresponding
rotation will not be carried out.

#4 PrintRotMatToFile !ModVibCoord
< string >

Specifies a file name which will be given to a file that contains the final rotation matrix.

#4 RandomStart !ModVibCoord
< integer = 0 >

Defines the number of sweeps in which mode-pairs are randomly rotated that are to be
performed before the commencing with vibrational coordinate optimization.

#4 RotationSuffix !ModVibCoord
< string = _rotated >

131

Specifies the suffix appended to all files which contains rotated values, e.g. .mop and .mol
files.

#4 Sweeps !ModVibCoord
< integer = 6 >

Defines the maximum number of sweeps that can be carried out in the Jacobi sweep al-
gorithm.

132

Chapter 25

ODE-integration options

This section describes the input options for the MidasCppODE library. This does not function as
a separate input block, but may be used at different input levels in other blocks (hence the < N >

in the keywords).

25.1 General keywords

#<N> Type
< string vector = MIDAS <stepper> > [MIDAS DOPR853] [MIDAS DOPR5] [GSL <gsl-stepper>]

Set type of ODE driver and stepping routine. If only one argument is provided, the MI-
DAS driver is used with the given stepper. For GSL, only the steppers that do not require
the Jacobian are available. Moreover, the GSL integrators are (of course) only available if
MidasCpp is linked with GSL.
(Use ’MIDAS DOPR853’ as a good general-purpose integrator.)

#<N> Name
< string >

Assign a name to the integrator.

#<N> IoLevel
< integer = 1 >

IO level of the integrator. Goes from no output to detailed flow of the steps taken.

#<N> TimeInterval
< real vector = 0 1 >

Set the time interval for integration. Note that the code has only been tested for inter-
vals starting at zero.

#<N> MaxSteps
< integer = -1 (no limit) >

133

Maximum number of steps in the integrator. -1 means no limit.

#<N> Tolerance
< real vector = 1.e-16 1.e-16 >

Set absolute and relative error tolerance.
(The default is too strict for most cases.)

#<N> OutputPoints
< integer = 20 >

Number of equidistant time points where specific properties (such as auto-correlation func-
tions in TDH) are calculated. If the argument is -1, output will be performed at all steps,
i.e. the points will NOT be equidistant!

#<N> InitialStepSize
< real >

Initial step size for the integration. If this is not set, the integrator will make a quali-
fied guess.
(The integrator’s guess is good enough in most cases. Only set this keyword if you run into
problems with the default.)

#<N> DatabaseSaveVectors

Save the y(t) vectors (in memory) for all equidistant steps for later analysis.
(Only use this if you need the vectors for analysis at the end of the calculation.)

#<N> FixedStepSize
< real = 1.e-2 > [AUTO] [<step-size>]

Use a fixed step size for the integration. If ’AUTO’ is given as argument, the integrator
will guess a ’suitable’ step size (which is not always good).

#<N> SaveSteps

Save info on step sizes and scaled errors and write this to disk at the end of the integra-
tion.

25.2 Advanced keywords

#<N> StepSizeControl
< real vector = Individual defaults set for each stepper >

Set constants for step-size control. Reads in 5 numbers: α, β, safe, minscale, maxscale. For

134

step-size control, the step size is scaled by: min(maxscale, max(minscale, safe × err−αn ×
err−βn−1)). Here err is the scaled error. Note that there is more going on than this in the
step-size controller. E.g. special action is taken after rejected steps, etc.
(Just use the defaults.)

#<N> MinStepSize
< real = 0 >

Minimum allowed step size. Integrator will throw an error if a smaller step is taken.

#<N> MidasOdeDriverMaxFailedSteps
< integer = 3 >

Number of times in a row a step can fail (the new y(t) vector is not accepted) before the
integrator throws an error.

#<N> ErrorType
< string = MEAN > [MEAN] [MAX] [SCALEDMAX]

Type of error estimate. This is only used for the ’MIDAS’ driver.
(Do not use ’SCALEDMAX’ (max error divided by number of equations) unless you have
good reason for doing so.)

#<N> GSLErrorScaling
< real vector = 1 0 >

Weight of errors in y(t) and y′(t), respectively. See the GSL odeiv2 documentation for
more information.

#<N> NoFSAL

Disable FSAL property (for the integrators that use FSAL), i.e. always calculate all deriva-
tives.
(Only use this as a debug option.)

135

Chapter 26

Tensor-decomposition options

This section describes the input options for the MidasCpp tensor-decomposition library. This does
not function as a separate input block, but may be used at different input levels in other blocks
(hence the < N > in the keywords).

26.1 General keywords

#<N> Type
< string vector = NOPREPROCESSOR <driver> <fitter> > [NOPREPROCESSOR/C2T
FIXEDRANKCP/FINDBESTCP/NESTEDCP ALS/ASD/NCG/NOFITTER]

Get the names of the preprocessor, the driver, and the fitter used for tensor decomposi-
tion and recompression. The preprocessor is turned off as default, so only two arguments are
required.
(Use ’C2T FINDBESTCP ALS’ for fast recompressions with error control.)

#<N> Name
< string >

Assign a name to the decomposer.

#<N> IoLevel
< integer = 1 >

IO level for decomposer.
(The default is fine unless you want detailed output.)

#<N> CpRank
< integer = 1 >

Set rank for FIXEDRANKCP driver.

#<N> CpAlsThreshold
< real = 1.e-12 >

136

Set threshold for CP-ALS algorithm.

#<N> CpAlsRelativeThreshold
< real = 0 (turned off) >

Set threshold for CP-ALS algorithm relative to requested accuracy of the CP decomposi-
tion.
(This option makes little sense with FIXEDRANKCP driver, since the rank cannot be ad-
justed to obtain a specific accuracy of the fit.)

#<N> CpAlsMaxIter
< integer = 100 >

Maximum iterations for CP-ALS algorithm.

#<N> FindBestCpMaxRank
< integer = 5 >

Maximum allowed rank for FINDBESTCP driver.

#<N> FindBestCpStartingRank
< integer = 1 >

Start FINDBESTCP driver at this rank.

#<N> FindBestCpRankIncr
< integer = 1 >

Rank increment in FINDBESTCP driver for fitting a tensor to a given accuracy.
(Set it low for finding the lowest possible rank. However, this may be inefficient.)

#<N> FindBestCpAdaptiveRankIncr

Set the rank increment in FINDBESTCP driver for a tensor F ∈ RI1×···×ID to ∆R =

mind Id(D − 2). This choice gives good performance in the CP-VCC transformer.
(This works fine as an automatic guess - especially if the C2T preprocessor is used.)

#<N> FindBestCpResThreshold
< real = 1.e-2 >

Requested absolute accuracy of CP fit in FINDBESTCP driver.

#<N> Guesser
< string = RANDOM > [RANDOM] [CONSTVAL] [SVD] [SCA]

137

Set the policy for generating starting guesses for CP decompositions.
(Use RANDOM initialization.)

#<N> GuessIncrementer
< string = FITDIFF > [RANDOM] [REPLACE] [CONSTVAL] [SCA] [FITDIFF] [STEPWISEFIT]

Set the policy for updating a tensor to a higher rank during CP decompositions.
(FITDIFF is recommended in most cases.)

#<N> CpNcgThreshold
< real = 1.e-10 >

Set threshold for CP-NCG algorithm.

#<N> CpNcgRelativeThreshold
< real = 0 (turned off) >

Set threshold for CP-NCG algorithm relative to requested accuracy of the CP decompo-
sition.
(This option makes little sense with FIXEDRANKCP driver, since the rank cannot be ad-
justed to obtain a specific accuracy of the fit.)

#<N> CpNcgMaxIter
< integer = 100 >

Maximum iterations for CP-NCG algorithm.

#<N> C2TSvdThreshold
< real = 1.e-10 >

Set accuracy of intermediate Tucker representation used in the C2T preprocessor.

#<N> CpNcgType
< string = HS > [HS (Hestenes-Stiefel)] [FR (Flecher-Reeves)] [PR (Polak-Ribiere)] [FP
(FR-PR)] [DY (Dai-Yuan)] [HZ (Hager-Zhang)]

Set type of NCG method.
(HS or HZ are usually the best for CP decomposition.)

#<N> CpNcgLineSearch
< string = WOLFE > [WOLFE] [EXACT] [HZ]

Set type of NCG line search.
(EXACT is often the best.)

#<N> CpAsdThreshold
< real = 1.e-10 >

138

Set threshold for CP-(P)ASD algorithm.

#<N> CpAsdRelativeThreshold
< real = 0 (turned off) >

Set threshold for CP-(P)ASD algorithm relative to requested accuracy of the CP decom-
position.
(This option makes little sense with FIXEDRANKCP driver, since the rank cannot be ad-
justed to obtain a specific accuracy of the fit.)

#<N> CpAsdMaxIter
< integer = 500 >

Maximum iterations for CP-(P)ASD algorithm.

#<N> CpAsdDiagonalPreconditioner

Use diagonal preconditioner with CP-(P)ASD algorithm.
(Highly recommended.)

#<N> PivotisedCpAsd

Use the CP-PASD algorithm instead of CP-ASD.
(Highly recommended as CP-ASD does not really work.)

#<N> CpNcgDiagonalPreconditioner

Use diagonal preconditioner with CP-NCG algorithm.
(This can give quite nice results.)

#<N> NestedCpResThreshold
< real = 1.e-2 >

Requested absolute accuracy of CP fit in NESTEDCP driver.

#<N> NestedCpMaxRank
< integer = 5 >

Maximum allowed rank for NESTEDCP driver.

#<N> NestedCpRankIncr
< integer = 1 >

Rank increment in NESTEDCP driver for fitting a tensor to a given accuracy.

139

#<N> NestedCpBalanceModeVectors

Balance the norms of the mode vectors of the updates in NESTEDCP driver.

#<N> NestedCpAdaptiveRankIncr

Set the rank increment in NESTEDCP driver for a tensor F ∈ RI1×···×ID to ∆R = mind Id(D−
2).

#<N> NestedCpAllowRefit

Refit the whole tensor if the NESTEDCP driver is not able to obtain a good fit within
an order of magnitude.

#<N> CpAlsNoDistanceConvCheck

Use error change instead of relative distance decrease for determining CP-ALS convergence.
(Use this if low ranks are more important than speed.)

#<N> CpAlsBalanceResult

Balance mode-vector norms of result after running CP-ALS.
(May improve numerical stability.)

#<N> Preset
< string > [VCCSOLVER] [VCCTRF]

Use a preset tailored for a given application.

26.2 Advanced keywords

#<N> CpAlsRCond
< real = 1.e-12 >

Set threshold for truncating the SVD in the linear-least-squares solver used in the CP-ALS
algorithm.

#<N> CpAlsUseFitNormChange

Check convergence of CP-ALS based on norm change in the fit.

#<N> CpAlsTikhonov
< real vector = 0.1 0.0 (turned off) >

140

Read two parameters α and q. α is the Tikhonov regularization parameter. The regu-
larization can be turned off during the iterations by multiplying α with q in each iteration.

#<N> CpAlsRals
< real vector = 0.1 0.0 (turned off) >

Read the same input as in #<N> CpAlsTikhonov. In addition to Tikhonov regulariza-
tion, use RALS where the right-hand-size of the linear system is also regularized.

#<N> FindBestCpScaleRankIncr

Set the rank increment in FINDBESTCP driver for a tensor F ∈ RI1×···×ID to ∆R =

∆Rin(D − 2), where ∆Rin is set using #<N> FindBestCpRankIncr.
(Use #<N> FindBestCpAdaptiveRankIncr instead.)

#<N> MatrixSvdRelThresh
< real = 1.e-2 >

Accuracy of decomposing matrices using SVD relative to requested accuracy of CP decom-
positions.

#<N> LowRankSVD

Use truncated SVD for decomposition of matrices (this is the default).

#<N> FullRankSVD

Do not truncate the SVD when decomposing matrices to CP format.
(Only use this if you want matrices to be represented exactly.)

#<N> CheckSVD

Check accuracy of SVD matrix fits.
(Only use this as a debug option.)

#<N> DecompToOrder

Only decompose tensors of order greater than or equal to this.

#<N> MaxRankMaxIter
< integer = -1 (turned off) >

Set maximum iterations for CP-ALS algorithm for the fit to the highest allowed rank. This
allows for spending more iterations on the final fit.

141

#<N> CheckIter
< integer = -1 (turned off) >

Check the error of the fit at this iteration in CP-ALS, CP-(P)ASD, or CP-NCG. If the
absolute error at this point is larger than the value given in #<N> CheckThresh the fitting
is aborted.
(Does not make sense to use with FIXEDRANKCP driver.)

#<N> CheckThresh
< real = 5.0 >

For CP-ALS, CP-(P)ASD, or CP-NCG check the error of the fit at the iteration given in
#<N> CheckIter. If the error at this point is larger than the this threshold the fitting is
aborted.
(Does not make sense to use with FIXEDRANKCP driver.)

#<N> NoGuessNormScaling

Disable scaling of starting guess by the norm of the target tensor. Also disable scaling
of some types of guess updates (RANDOM and CONSTVAL).

#<N> ResidualOverlapScaling

Scale RANDOM and CONSTVAL updates by their overlap with the residual tensor be-
fore adding to the fitting tensor.

#<N> NoResidualNormScaling

Do not scale RANDOM and CONSTVAL updates by the norm of the residual tensor (use
the target norm instead).

#<N> FitDiffRelativeThreshold
< real = 1.e-2 >

Relative threshold for fitting the residual when using FITDIFF or STEPWISEFIT guess
incrementers.

#<N> FindBestCpMaxErrorIncr
< integer = 1 >

Set maximum number of times the error of the fit is allowed to increase when going to a
higher rank.

#<N> CpNcgAlphaMax
< real = 1.e5 >

142

Maximum step length for WOLFE line-search algorithm.

#<N> CpNcgAlphaResolution
< real = 5.e-2 >

Resolution of step length for WOLFE line-search algorithm.

#<N> CpNcgWolfeC1
< real = 1.e-4 >

C1 parameter for WOLFE line search (strong Wolfe conditions).

#<N> CpNcgWolfeC2
< real = 1.e-1 >

C2 parameter for WOLFE line search (strong Wolfe conditions).

#<N> CpPasdMaxNormPivot

Use max norm to determine the pivot in CP-PASD algorithm.

#<N> CpPasdBalanceModeVectors

Balance norms of mode vectors after each CP-PASD update.

#<N> PivotisedCpAls

Use the pivotised version of CP-ALS.

#<N> CpAlsGelsd
< integer = 20 >

Use GELSD instead of GELSS for solving the least-squares problem in CP-ALS when the
rank is larger than this value.
(The default is usually fine.)

#<N> CpAlsNewton

Use the Newton version of CP-ALS where the update to the mode matrix is computed
(instead of the new matrix itself).

143

#<N> CpAlsLineSearch

Use line searches together with the Newton version of CP-ALS, i.e. the updates are scaled
by a factor > 1 that depends on the iteration number and tensor order.

#<N> CpNcgGeneralSolver

Use the general NCG implementation for CP-NCG instead of the specialized one.
(Only for testing purposes.)

#<N> CpNcgMaxElementConvCheck

Converge CP-NCG based on the maximum element of the gradient.

#<N> CpNcgBalanceModeVectors

Balance the mode-vector norms after each CP-NCG step.

#<N> C2TSafeSvd

Use GESVD instead of GESDD in C2T algorithm.
(Only for testing purposes.)

#<N> DefaultResidualFitter

Always use CP-ALS for fitting residuals for FITDIFF and STEPWISEFIT guess updates.
(Can be an improvement when using CP-PASD or CP-NCG as these methods may perform
poorly for low-rank fits.)

#<N> HagerZhangTheta
< real = 2.0 >

Theta parameter for Hager-Zhang NCG method.
(theta=2.0 is the CG_DESCENT method)

#<N> NestedCpSafeResidualNorm

Calculate residual norms the safe (and expensive) way in NESTEDCP driver.

#<N> CpNcg3PGRelThreshold
< real = 1.e-3 >

Set relative threshold for EXACT (3-PG) line-search algorithm used in CP-NCG.

#<N> CpNcgRestart
< real = 1.e-1 >

144

Restart NCG algorithm if cosine to angle between old and new gradient is larger than this
threshold (i.e. if gradients are far from orthogonal).

#<N> CpAlsConditionCheck

Check conditioning of CP-ALS fit.
(This is a debug option.)

#<N> NestedCpScaleRankIncr

Set the rank increment in FINDBESTCP driver for a tensor F ∈ RI1×···×ID to ∆R =

∆Rin(D − 2), where ∆Rin is set using #<N> NestedCpRankIncr.

#<N> CpAlsNormRegularization
< real = 0.0 (no regularization) >

Regularization parameter for CP norm regularization.

#<N> CpAlsScaleLSSystem

Scale LS system in CP-ALS by norm of target tensor.

#<N> CpAlsScaleFitTensor

Scale fitting tensor to the norm of the target before running CP-ALS.

#<N> CpAlsInitialErrorCalculation

Calculate error before starting the CP-ALS iterations.
(May be a good idea if you want to be able to stop the iterations early.)

#<N> EffectiveLowOrderSVD

Use SVD to decompose tensors that are effectively of order 2 (other extents are 1).

#<N> NoDecomposeCanonical

Do not let this decomposer recompress CanonicalTensor.

#<N> NoDecomposeDirProd

Do not let this decomposer recompress TensorDirectProduct.

145

#<N> NoDecomposeSum

Do not let this decomposer recompress TensorSum.

146

Chapter 27

Laplace-decomposition options

27.1 General keywords

#<N> Type
< string > [NOOPT] [FIXLAP] [BESTLAP]

Set the type of Laplace quadrature for approximating energy denominators. Options are
’NOOPT’ (use pre-optimized data), ’FIXLAP’ (optimize fixed number of points) , and
’BESTLAP’ (optimize to given accuracy, allow the algorithm to increase the number of
points).
(Use ’NOOPT’ for CP-VCC calculations where the denominators are only used for updates
in the equation solver.)

#<N> Name
< string >

Assign a name to the quadrature.

#<N> IoLevel
< integer = 1 >

IO level for Laplace quadrature.

#<N> NumPoints
< integer = 4 >

Set the number of points for types ’NOOPT’ and ’FIXLAP’.

#<N> MaxPoints
< integer = 20 >

Set the maximum number of points for type ’BESTLAP’.

#<N> MinPoints
< integer = 2 >

147

Set the minimum number of points for type ’BESTLAP’.

#<N> LapConv
< real = 1.0e-4 >

Set the requested accuracy for type ’BESTLAP’.

27.2 Advanced keywords

#<N> HistogramDelta
< real = 1.0e-1 >

Set the spacing for constructing an energy histogram used for optimizing the quadrature.

148

Appendix A

Input file description

A.1 The molecule file

Standard input for molecular structure information is stored in a file named Molecule.mol.
Input for rectilinear vibrational coordinates is

#0 MOLECULEINPUT

1 XYZ
<number of atoms> <unit>
comment line
<element atom 1> <x atom 1> <y atom 1> <z atom 1>
<element atom 2> <x atom 2> <y atom 2> <z atom 2>
<element atom 3> <x atom 3> <y atom 3> <z atom 3>
...

#1 FREQ
<number of modes> <unit>
<frequency mode 1>
<frequency mode 2>
<frequency mode 3>
...

#1 VIBCOORD
<unit>

#2 COORDINATE
< x atom 1 mode 1 > < y atom 1 mode 1 > < z atom 1 mode 1 >
< x atom 2 mode 1 > < y atom 2 mode 1 > < z atom 2 mode 1 >
< x atom 3 mode 1 > < y atom 3 mode 1 > < z atom 3 mode 1 >
...

#2 COORDINATE
< x atom 1 mode 2 > < y atom 1 mode 2 > < z atom 1 mode 2 >
< x atom 2 mode 2 > < y atom 2 mode 2 > < z atom 2 mode 2 >
< x atom 3 mode 2 > < y atom 3 mode 2 > < z atom 3 mode 2 >
...

...

#0 MOLECULEINPUTEND

149

If the coordinates are multiplied entry-wise with
√

(mi), where mi is the mass of the respective
atom, they will be orthonormal.

150

Appendix B

Output file description

B.1 Vibrational wave function calculation output files

This section gives a non-exhaustive overview of the output files generated by the various vibrational
wave-function methods implemented in MidasCpp.

Many output files contain a <FileIndex> which is used if the data is distributed over multiple
files. Usually, this is not the case and the index is simply 0.

B.1.1 Output files from VSCF calculations

All VSCF calculations have a name called <VscfName> in the following. This consists of the prefix
given under the #3 Name keyword followed by a state label (default is _0.0, i.e. the ground state).
Note that the default VSCF prefix is <Operator>_<Basis>.

• <VscfName>_Modals_<FileIndex> !VSCF

Binary file containing the VSCF modals for the given VSCF calculation. The modals are
saved vector by vector, i.e. the eigen-vector matrices are saved in column-major format. Note
that for VSCF calculations used as reference for VCC, VscfName is replaced by VccName.

• <VscfName>_OccModals_<FileIndex> !VSCF

Binary file containing the occupied VSCF modal for each mode for the given VSCF cal-
culation. Note that for VSCF calculations used as reference for VCC, VscfName is replaced
by VccName.

• <VscfName>_EigVal_<FileIndex> !VSCF

Binary file containing the VSCF modal energies (relative to the occupied modal) for the
given VSCF calculation. The energies are saved with the occupied-modal energy (always
zero) first and then the rest in ascending order. Note that for VSCF calculations used as
reference for VCC, VscfName is replaced by VccName.

• <Operator>_<Basis>_OneModeInt_<FileIndex> !VSCF

151

Binary file containing the one-mode integrals of a given operator in a given primitive ba-
sis.

• analysis/Vscf_ss_Info_Energy !VSCF

Summary of energies obtained from state-specific VSCF calculations. Used for later sim-
ulation of temperature effects.

• analysis/Vscf_ss_Info_Prop !VSCF

Summary of the number of states and properties. Used for later simulation of tempera-
ture effects.

• analysis/Vscf_ss_Info_Property_<PropNumber> !VSCF

Summary of a given property for all calculated states. Used for later simulation of tem-
perature effects.

B.1.2 Output files from correlated vibrational wave-function calcula-
tions

All correlated vibrational wave-function calculations have a name called <VccName> in the following.
This consists of the prefix given under the #3 Name keyword followed by a state label (as in
VSCF), the excitation level (EXC), and the interaction-space order (ISO). Thus the name of a
ground-state VCC[2] calculation with no limitations in the interaction space will have the name
<VccPrefix>_0.0_EXC_2_ISO_0. Note that the VSCF calculation used as reference in a given
correlated calculation uses the <VccName> as <VscfName> in its output files.

• <VccName>_Vci_vec_<Root>_<FileIndex> !VCI

Binary file containing the VCI eigen vector for a given root. The data is stored in the
same order as the mode-combination range with the reference coefficient first followed by the
one-mode coefficients, two-mode coefficients, etc. For storage of matrices and higher-order
tensors, the last (right) indices are leading.

• <VccName>_Vcc_vec_0_<FileIndex> !VCC

Binary file containing the VCC solution vector. The data is stored in the same order as
the mode-combination range.

• <VccName>_Vcc_vec_tensor_0_0 !VCC !TENSOR

Binary file containing the VCC solution vector in tensor format (can be either full or CP
depending on the calculation).

152

• <VccName>_Vcc_resid_tensor_0_0 !VCC !TENSOR

Binary file containing the VCC residual vector in tensor format (can be either full or CP
depending on the calculation).

• <VccName>_Vcc_decomp_threshold !VCC !TENSOR

The latest decomposition threshold for the VCC amplitudes used in for CP-VCC ground-
state calculations.

• <VccName>_Vcc_<Algorithm>_<VecType>_<VecIndex> !VCC !TENSOR

Residuals and trials for CROP or DIIS subspaces used for restarts. <Algorithm> is ei-
ther CROP or DIIS. <VecType> is either resid or trial.

• <VccName>_Vmp_sum_wf_<FileIndex> !VMP

Binary file containing the VMP wave function.

• <VccName>_rsp_eigvec_<Root>_<FileIndex> !VCC !VCI !RSP

Binary file containing the response eigen vector for a given root. The data is stored in
the same order as the mode-combination range.

• <VccName>_rsp_eigvec_tensor_<Root> !VCC !RSP !TENSOR

VCC response eigenvector for tensor-based calculations.

• <VccName>_rsp_eigval_<FileIndex> !VCC !VCI !RSP

Binary file containing the response eigenvalues (excitation energies).

• <VccName>_rsp_eigval_<ReIm>_tensor_0 !VCC !RSP !TENSOR

Binary file containing the real or imaginary parts of tensor-based VCC response eigenval-
ues (excitation energies).

• <VccName>_rsp_eigvec_left_<Root>_<FileIndex> !VCC !RSP

Binary file containing the left response eigen vector for a given root. The data is stored
in the same order as the mode-combination range.

153

• <VccName>_rsp_eigvec_left_tensor_<Root> !VCC !RSP !TENSOR

Left VCC response eigenvector for tensor-based calculations.

• <VccName>_rsp_eigval_left_<FileIndex> !VCC !RSP

Binary file containing the left response eigenvalues (excitation energies).

• <VccName>_rsp_eigval_<ReIm>_left_tensor_0 !VCC !RSP !TENSOR

Binary file containing the real or imaginary parts of tensor-based left VCC response eigen-
values (excitation energies).

• <VccName>_rsp_vci_eta_<Operator>_<FileIndex> !VCI !RSP

Auxiliary vector used in VCI response calculations.

• <VccName>_eta_vec_<Operator>_<FileIndex> !VCC !VCI !RSP

Auxiliary vector used in VCC and VCI response calculations.

• <VccName>_eta0_vec_<FileIndex> !VCC !RSP

Auxiliary vector used in VCC response calculations.

• <VccName>_mul0_vec_<Root>_<FileIndex> !VCC !RSP

Zeroth-order multipliers for a given root. Used in VCC response calculations.

• <VccName>_rsp_vcc_fr_<Root>_<FileIndex> !VCC !RSP

Auxiliary vector used in VCC response calculations.

• <VccName>_rsp_vcc_m_<Root>_<FileIndex> !VCC !RSP

Auxiliary vector used in VCC response calculations.

• <VccName>_xi_vec_<Operator>_<FileIndex> !VCC !RSP

Auxiliary vector used in VCC response calculations.

154

• RspTargetVector_<Root>_<FileIndex> !VCC !VCI !RSP

Target vectors generated by the default eigenvalue solver.

• target_<Root> !VCC !RSP !TENSOR

Target vectors used by the new eigenvalue solvers, e.g. for tensor-based VCC response cal-
culations.

• analysis/RspTargetVectors<Extension> !VCC !VCI !RSP

Auxiliary files for targeting procedure.

• analysis/Target_Overlaps !VCC !VCI !RSP

Auxiliary file for targeting procedure.

• analysis/TargSolvecS.mat !VCC !VCI !RSP

Auxiliary file for targeting procedure.

• analysis/SolvecE.mat !VCC !VCI !RSP

Auxiliary file for targeting procedure.

• analysis/VCCRESTART.INFO !VCC !VCI

Info file for restarting correlated wave-function calculations.

• analysis/VCCRSPRESTART.INFO !VCC !VCI !RSP

Info file for restarting response calculations.

• analysis/TENSORVCCRESTART.INFO !VCC !TENSOR

Info file for restarting VCC calculations using TensorNlSolver (this includes all CP-VCC
calculations).

• analysis/<Method>_ss_Info_Energy !VCC !VCI !VMP

Summary of energies obtained from state-specific correlated wave-function calculations. Used
for later simulation of temperature effects.

155

• analysis/<Method>_ss_Info_Prop !VCC !VCI !VMP

Summary of the number of states and properties. Used for later simulation of tempera-
ture effects.

• analysis/<Method>_ss_Info_Property_<PropNumber> !VCC !VCI !VMP

Summary of a given property for all calculated states. Used for later simulation of tem-
perature effects.

B.1.3 Output files from time-dependent wave-function calculations

• analysis/<TdHName>_energy.dat !TDH

Energy of the TDH wave function at all steps during the integration.

• analysis/<TdHName>_phase.dat !TDH

Phase factor (F (t) in |Φ̄〉 = e−iF (t) |Φ̃〉) of the TDH wave function at all steps during the
integration.

• analysis/<TdHName>_ac.dat !TDH

Auto-correlation function calculated at equidistant time points.

• analysis/<TdHName>_t12ac.dat !TDH

Auto-correlation function calculated at equidistant time points using the wave function at
half time.

• analysis/<TdHName>_<CorrelationFunction>_spectrum.dat !TDH

The spectrum of the TDH wave packet obtained as a Fourier transform of a given corre-
lation function.

• analysis/<TdHName>_mean_<Operator>.dat !TDH

Expectation value of operator calculated at all steps during the integration. The file also
contains expectation values where only active terms are included for each mode.

• analysis/<TdHName>_kappa_norms.dat !TDH

156

The norms of the kappa vectors in X-TDH calculated at all steps during the integration.

• analysis/<TdHName>_wf.dat !TDH

The TDH wave function (the time-dependent modals) calculated at equidistant time points.
Note that the phase factor is multiplied on all modals so the total wave function is not a
product of the modals!

• analysis/<TdHName>_density.dat !TDH

The TDH one-mode wave-function density calculated at equidistant time points.

• analysis/<TdHName>_pair_density_<Mode1>_<Mode2>.dat !TDH

The TDH two-mode wave-function density for a given pair of modes calculated at equidistant
time points.

B.2 Surface calculation output files

This section gives a non-exhausting list of output files generated over the course of a potential
energy or molecular property surface calculation.

B.2.1 Output files in analysis sub-directory

• PointQ_Prop<PropNr>_<ModeNr>.mplot !ADGA

File holding the fitted displacement vibrational coordinate value and associated bar-potential
value for use with plotting tools. Note that this file will always apply to the current iteration,
while files applicable for previous iterations will have the suffix _it<IterNr>.

• Potential_Prop<PropNr>_Q<ModeNr>.mplot !ADGA

File holding evaluated values of the analytic form of the surface at a uniform grid of plot
points for use with plotting tools. Note that this file will always apply to the current itera-
tion, while files applicable for previous iterations will have the suffix _it<IterNr>.

• MaxDens_Prop<PropNr>_Q<ModeNr>.mplot !ADGA

File holding the evaluated values for the maximum vibrational density at a uniform grid
of plot points for use with plotting tools. Note that this file will always apply to the current
iteration, while files applicable for previous iterations will have the suffix _it<IterNr>.

157

• MeanDens_Prop<PropNr>_Q<ModeNr>.mplot !ADGA

File holding the evaluated values for the mean vibrational density at a uniform grid of plot
points for use with plotting tools. Note that this file will always apply to the current itera-
tion, while files applicable for previous iterations will have the suffix _it<IterNr>.

• one_mode_grid_bounds.mbounds !ADGA !Static

File holding information on the boundaries for the individual modes, i.e. the dimensions
of the grid of single points.

• EsPoints_Prop<PropNr>_Q<ModeNr>.mplot !ADGA !Static

File holding the non-fitted property values in terms of displacement vibrational coordinates
for use with plotting tools. Note that this file will always apply to the current iteration, while
files applicable for previous iterations will have the suffix _it<IterNr>.

• VscfDensFiles !ADGA

File holding information on where the MaxDens_Q<ModeNr>.mplot or MeanDens_Q<ModeNr>.mplot
files are stored.

B.2.2 Output files in savedir sub-directory

• prop_no_<PropNr> !ADGA !Static !Taylor

File holding the single point calculation number, single point identification code and the
associated calculated property value at each line. The property values are the values ob-
tained directly from an electronic structure calculation.

• prop_no_<PropNr>.bar !ADGA !Static

File holding the displacement vibrational coordinate value and the associated property value
resulting from evaluating the analytic form of the surface, as seen in the prop_no_<ModeNr>.mop
file. This means that it is the so-called bar-potential or bar-property values that can be found
in this file.

• prop_no_<PropNr>_shifted !ADGA !Static !Taylor

File holding the single point calculation number, single point identification code and the asso-
ciated calculated property value subtracted by the reference value as given in the Reference_values
file, at each line. The property values are the values obtained directly from an electronic struc-
ture calculation.

158

• prop_no_<PropNr>.mop !ADGA !Static !Taylor

A Midas Operator file (.mop) holding the analytical surface in terms of the fit-basis functions,
which results from fitting and/or interpolating the grid of single points.

• Harmonic_Frequencies !ADGA !Static !Taylor

File holding the harmonic frequencies for each vibrational mode if it is possible to obtain
these over the coarse of the calculation.

• Inertia_Tensor !ADGA !Static !Taylor

File holding the inertia tensor for the reference structure.

• offsets_to_bar_files !ADGA !Static

File holding information on which blocks of the prop_no_<Propnr>.bar file belongs to which
mode or mode combination.

• Reference_values !ADGA !Static !Taylor

File holding the property/properties value/values for the reference structure.

• sp_restart_<PropNr> !ADGA !Static !Taylor

File holding restart information on each calculated single point. Single point identification
code is followed by the number of properties calculated for it. The following lines contain
the rotation group, a label and the property value.

• These_Properties_Have_Been_Calculated !ADGA !Static !Taylor

File holding information on the property number, the electronic state it belongs to and
a label for the particular multi-level it was calculated for. Note that the properties will be
numbered based on which line they appear in the midasifc.propinfo file of the associated
setup sub-directory.

159

Bibliography

[1] O. Christiansen, D. Artiukhin, I. H. Godtliebsen, E. M. Gras, W. Győrffy, M. B. Hansen, M.
B. Hansen, E. L. Klinting, J. Kongsted, C. König, D. Madsen, N. K. Madsen, K. Monrad, G.
Schmitz, P. Seidler, K. Sneskov, M. Sparta, B. Thomsen, D. Toffoli, A. Zoccante, MidasCpp,
version 2019.04.0.

[2] B. Thomsen, K. Yagi, O. Christiansen, “Optimized coordinates in vibrational coupled cluster
calculations”, Journal of Chemical Physics 2014, 140, 154102–124101–15.

[3] B. Thomsen, K. Yagi, O. Christiansen, “A simple state-average procedure determining op-
timal coordinates for anharmonic vibrational calculations”, Chemical Physics Letters 2014,
610–611, 288–297.

[4] E. L. Klinting, C. König, O. Christiansen, “Hybrid Optimized and Localized Vibrational
Coordinates”, The Journal of Physical Chemistry A Nov. 2015, 119, 11007–11021.

[5] C. König, M. B. Hansen, I. H. Godtliebsen, O. Christiansen, “FALCON: A method for flexible
adaptation of local coordinates of nuclei”, Journal of Chemical Physics 2016, 144, 074108.

[6] J. Kongsted, O. Christiansen, “Automatic generation of force fields and property surfaces for
use in variational vibrational calculations of anharmonic vibrational energies and zero-point
vibrational averaged properties”, J. Chem. Phys. 2006, 125, 124108–16.

[7] D. Toffoli, J. Kongsted, O. Christiansen, “Automatic generation of potential energy and
property surfaces of polyatomic molecules in normal coordinates”, J. Chem. Phys. 2007,
127, 204106–14.

[8] E. Matito, D. Toffoli, O. Christiansen, “A hierarchy of potential energy surfaces constructed
from energies and energy derivatives calculated on grids”, J. Chem. Phys. 2009, 130, 1341041–
13.

[9] C. König, O. Christiansen, “Linear-scaling generation of potential energy surfaces using a
double incremental expansion”, J. Chem. Phys. 2016, 145, 064105.

[10] M. Sparta, D. Toffoli, O. Christiansen, “An Adaptive Density-Guided Approach for the gen-
eration of potential energy surfaces of polyatomic molecules”, Theor. Chem. Acc. 2009, 123,
413 –429.

[11] M. Sparta, D. T. I.-M. Høyvik, O. Christiansen, “Potential energy surfaces for vibrational
structure calculations from a multiresolution adaptive density-guided approach: implemen-
tation and test calculations”, J. Phys. Chem. A 2009, 113, 8712–8723.

[12] E. L. Klinting, B. Thomsen, I. H. Godtliebsen, O. Christiansen, “Employing general fit-bases
for construction of potential energy surfaces with an adaptive density-guided approach”, The
Journal of Chemical Physics Feb. 2018, 148, 064113.

[13] O. Christiansen, “Møller-Plesset perturbation theory for vibrational wave functions”, J. Chem.
Phys. 2003, 119, 5773–5781.

[14] J. M. Bowman, “Self-consistent field energies and wavefunctions for coupled oscillators”, J.
Chem. Phys. 1978, 68, 608–610.

[15] R. B. Gerber, M. A. Ratner, “self-consistent field review”, Adv. Chem. Phys. 1988, 70, 97.
[16] M. B. Hansen, M. Sparta, P. Seidler, O. Christiansen, D. Toffoli, “A new formulation and im-

plementation of vibrational self-consistent field (VSCF) theory”, J. Chem. Theo. and Comp.
2010, 6, 235–248.

[17] O. Christiansen, “A second quantization formulation of multi-mode dynamics”, J. Chem.
Phys. 2004, 120, 2140–2148.

160

[18] J. O. Jung, R. B. Gerber, “Vibrational wave functions and spectroscopy of (H2O)n, n=2,3,4,5:
Vibrational self-consistent field with correlation corrections”, J. Chem. Phys. 1996, 105,
10332–10348.

[19] L. S. Norris, M. A. Ratner, A. E. Roitberg, R. B. Gerber, “Møller-Plesset perturbation theory
applied to vibrational problems”, J. Chem. Phys. 1996, 105, 11261–11267.

[20] E Matito, J. M. Barroso, E. Besalú, O Christiansen, J. M. Luis, “The vibrational auto-
adjusting perturbation theory”, Theor. Chem. Acc. 2009, 123, 41–49.

[21] O. Christiansen, “Vibrational coupled cluster theory”, J. Chem. Phys. 2004, 120, 2149–2159.

[22] P. Seidler, M. B. Hansen, O. Christiansen, “Towards fast computations of correlated vi-
brational wave functions: Vibrational coupled cluster response excitation energies at the
two-mode coupling level”, J. Chem. Phys. 2008, 128, 154113–12.

[23] A. Zoccante, P. Seidler, O. Christiansen, “Computation of expectation values from vibrational
coupled-cluster at the two-mode coupling level”, J. Chem. Phys. 2011, 134, 154101–154109.

[24] P. Seidler, O. Christiansen, “Automatic derivation and evaluation of vibrational coupled
cluster theory equations”, J. Chem. Phys. 2009, 131, 234109–15.

[25] P. Seidler, E. Matito, O. Christiansen, “Vibrational coupled cluster theory with full two-mode
and approximate three-mode couplings: The VCC[2pt3] model”, J. Chem. Phys. 2009, 131,
034115–12.

[26] A. Zoccante, P. Seidler, M. B. Hansen, O. Christiansen, “Approximate inclusion of four-mode
couplings in vibrational coupled-cluster theory”, English, Journal of Chemical Physics 2012,
136, 204118–204118–12.

[27] N. K. Madsen, I. H. Godtliebsen, O. Christiansen, “Efficient algorithms for solving the non-
linear vibrational coupled-cluster equations using full and decomposed tensors”, The Journal
of Chemical Physics 2017, 146, 134110.

[28] O. Christiansen, “Response theory for vibrational wave functions”, J. Chem. Phys. 2005,
122, 194105.

[29] P. Seidler, O. Christiansen, “Vibrational excitation energies from vibrational coupled cluster
response theory”, J. Chem. Phys. 2007, 126, 204101.

[30] P. Seidler, M. Sparta, O. Christiansen, “Vibrational coupled cluster response theory: A gen-
eral implementation”, J. Chem. Phys. 2011, 134, 054119–15.

[31] W. Györffy, P. Seidler, O. Christiansen, “Solving the eigenvalue equations of correlated vibra-
tional structure methods: preconditioning and targeting strategies”, J. Chem. Phys. 2009,
131, 024108–16.

[32] B. Thomsen, M. B. Hansen, P. Seidler, O. Christiansen, “Vibrational absorption spectra from
vibrational coupled cluster damped linear response functions calculated using an asymmetric
Lanczos algorithm”, English, Journal of Chemical Physics 2012, 136, 124101–124101–17.

[33] I. H. Godtliebsen, O. Christiansen, “A band Lanczos approach for calculation of vibrational
coupled cluster response functions: simultaneous calculation of IR and Raman anharmonic
spectra for the complex of pyridine and a silver cation”, en, Physical Chemistry Chemical
Physics 2013, DOI 10.1039/C3CP50283J.

[34] I. H. Godtliebsen, O. Christiansen, “Calculating vibrational spectra without determining
excited eigenstates: Solving the complex linear equations of damped response theory for
vibrational configuration interaction and vibrational coupled cluster states”, en, The Journal
of Chemical Physics Oct. 2015, 143, 134108.

[35] O. Christiansen, J. Kongsted, M. J. Paterson, J. M. Luis, “Linear Response functions for a
vibrational configuration interaction state”, J. Chem. Phys. 2006, 125, 214309.

[36] M. B. Hansen, O. Christiansen, C. Hättig, “Automated calculation of anharmonic vibrational
contributions to first hyperpolarizabilities: Quadratic response functions from vibrational
configuration interaction wave functions”, J. Chem. Phys. 2009, 131, 154101.

[37] M. B. Hansen, O. Christiansen, “Vibrational contributions to cubic response functions from
vibrational configuration interaction response theory”, Journal of Chemical Physics 2011,
135, 154107–154107–14.

161

http://dx.doi.org/10.1039/C3CP50283J

[38] P. Seidler, M. B. Hansen, W. Györffy, D. Toffoli, O. Christiansen, “Vibrational absorption
spectra calculated from vibrational configuration interaction response theory using the Lanc-
zos method”, J. Chem. Phys. 2010, 132, 164105–15.

[39] I. H. Godtliebsen, B. Thomsen, O. Christiansen, “Tensor Decomposition and Vibrational
Coupled Cluster Theory”, The Journal of Physical Chemistry A 2013, 117, 7267–7279.

[40] I. H. Godtliebsen, M. B. Hansen, O. Christiansen, “Tensor decomposition techniques in the
solution of vibrational coupled cluster response theory eigenvalue equations”, The Journal of
Chemical Physics 2015, 142, 024105.

[41] N. K. Madsen, I. H. Godtliebsen, S. A. Losilla, O. Christiansen, “Tensor-decomposed vi-
brational coupled-cluster theory: Enabling large-scale, highly accurate vibrational-structure
calculations”, The Journal of Chemical Physics Jan. 2018, 148, 024103.

[42] C. d. Boor, A Practical Guide to Splines, Springer Verlag, New York, 1978.

[43] D. Toffoli, M. Sparta, O. Christiansen, “Accurate multimode vibrational calculations using a
B-spline basis: theory, tests and application to dioxirane and diazirinone”, Mol. Phys. 2011,
109, 673–685.

162

	Preface
	Distribution and License
	Standard Disclaimer
	Citation
	Authors

	I MidasCpp User's Guide
	Getting started
	Installation
	Running MidasCpp
	Input
	Getting started with the example suite

	Tutorial
	Running a VSCF calculation
	Constructing a potential energy or molecular property surface

	More detailed information
	Advanced installations
	Compiling with MPIand OpenMP
	External libraries
	Vector inputs

	Potential energy or molecular property surface calculations
	Electronic structure programs
	Folder structure
	Commencing a calculation

	II Theory
	Coordinates
	Normal-Coordinates and harmonic oscillator treatment of Molecular vibrations
	Classical coordinate transformation approach
	Quantization of the vibrational energy

	Frequency scaled normal coordinates
	Semi-numerical gradient-based frequency analysis
	Optimized coordinates
	Optimized Coordinates
	On PES forms appropriate for Optimization of Coordinates
	State-average Optimized Coordinates
	Hybrid Optimized and Localized Coordinates

	FALCON: Flexible Adaptation of Local Coordinates Of Nuclei

	Potential energy surfaces
	Potential energy surfaces - general aspects
	The potential energy surface as a function of many variable
	Approximate representation of potential energy surfaces
	Taylor expansion of the potential
	Restricted mode coupling
	Building the potential through its values on a grid
	Midas PES construction methods
	Taylor expansion
	Static grids expansion
	Double incremental expansion
	The Adaptive density guided approach

	Wave-functions for nuclear motion for systems with many degrees of freedom: An overview
	Introduction, notation, and the scaling problem
	The vibrational self consistent field method
	Basis set expansion for VSCF
	Correlated Vibrational Wave functions : basic aspects
	A few comments
	Vibrational Configuration Interaction
	Vibrational Møller-Plesset perturbation theory
	Vibrational coupled cluster theory

	Many-mode wave-functions in MidasCpp
	Vibrational Self-Consistent Field
	Vibrational Møller-Plesset perturbation theory
	Vibrational Coupled Cluster
	Ground-state Vibrational Coupled Cluster
	VCC response theory

	Vibrational Configuation Interaction
	Tensor-Decomposition Methods

	Primitive basis sets and integrals
	B-spline basis functions
	B-spline basis function definition
	Integrals of B-spline basis functions
	Why B-spline basis sets are useful
	Defining the B-spline basis in MidasCpp
	B-spline basis sets literature and citations

	Harmonic oscillator basis functions
	Distributed Gaussians

	III MidasCpp Input/Output Reference Manual
	General input options
	General keywords
	Advanced keywords

	Singlepoint input options
	General keywords

	Vib input options
	General keywords
	Advanced keywords

	Basis input options
	General keywords
	Advanced keywords

	Operator input options
	General keywords
	Advanced keywords
	Operator input from file

	VSCF input options
	General keywords
	Advanced keywords

	VCC input options
	General keywords
	Advanced keywords
	Tables

	Response input options
	General keywords
	Advanced keywords

	TDH input options
	General keywords
	Advanced keywords

	Pes input options
	General keywords
	Advanced keywords

	FitBasis input options
	General keywords
	Advanced keywords

	GenFitBasisDef input options
	General keywords

	System input options
	General keywords

	Falcon input options
	General keywords
	Advanced keywords

	FreqAna input options
	General keywords

	RotCoord input options
	General keywords

	ODE-integration options
	General keywords
	Advanced keywords

	Tensor-decomposition options
	General keywords
	Advanced keywords

	Laplace-decomposition options
	General keywords
	Advanced keywords

	Input file description
	The molecule file

	Output file description
	Vibrational wave function calculation output files
	Output files from VSCF calculations
	Output files from correlated vibrational wave-function calculations
	Output files from time-dependent wave-function calculations

	Surface calculation output files
	Output files in analysis sub-directory
	Output files in savedir sub-directory

